#### Algorithmic game theory

Martin Balko

#### 11th lecture

December 17th 2020



• We can design DSIC single-parameter environments that maximize the social surplus  $\sum_{i=1}^{n} v_i x_i(b)$ .

- We can design DSIC single-parameter environments that maximize the social surplus  $\sum_{i=1}^{n} v_i x_i(b)$ .
- For single-item auctions, this is done by Vickrey's auction.

- We can design DSIC single-parameter environments that maximize the social surplus  $\sum_{i=1}^{n} v_i x_i(b)$ .
- For single-item auctions, this is done by Vickrey's auction.
- In general single-parameter environments, we use Myerson's lemma.

- We can design DSIC single-parameter environments that maximize the social surplus  $\sum_{i=1}^{n} v_i x_i(b)$ .
- For single-item auctions, this is done by Vickrey's auction.
- In general single-parameter environments, we use Myerson's lemma.
- How about maximizing the revenue  $\sum_{i=1}^{n} p_i(b)$ ?

- We can design DSIC single-parameter environments that maximize the social surplus  $\sum_{i=1}^{n} v_i x_i(b)$ .
- For single-item auctions, this is done by Vickrey's auction.
- In general single-parameter environments, we use Myerson's lemma.
- How about maximizing the revenue  $\sum_{i=1}^{n} p_i(b)$ ?
- The situation then becomes more complicated, but we will show some nice results today.

## Revenue maximizing auctions





Source: https://xkcd.com/835/

# Thank you for your attention and Merry Christmas.