Algorithmic game theory – Tutorial 5*

December 19, 2019

1 Revenue-maximizing auctions

We consider the Bayesian model, which consists of a single-parameter environment (x, p) with n bidders, where, for each bidder i, the private valuation v_i of i is drawn from a probability distribution F_i with density function f_i and with support contained in $[0, v_{max}]$. The distributions F_1, \ldots, F_n are independent, but not necessarily the same. We recall that if F is a probability distribution with density f and with support $[0, v_{max}]$, then $f(z) = \frac{d}{dz}F(z)$ and $F(x) = \int_0^x f(z) dz$. Also, for a random variable X, we have $\mathbb{E}_{z \sim F}[X(z)] = \int_0^{v_{max}} X(z) \cdot f(z) dz$.

The virtual valuation of bidder i with valuation v_i drawn from F_i is $\varphi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$. The virtual social surplus is $\sum_{i=1}^{n} \varphi_i(v_i) \cdot x_i(v)$. We consider only DSIC auctions.

Exercise 1. Let F be the uniform probability distribution on [0,1]. Consider a single-item auction with two bidders 1 and 2 that have probability distributions $F_1 = F$ and $F_2 = F$ on their valuations. Prove that the expected revenue obtained by the Vickrey auction (with no reserve) is 1/3.

Exercise 2. Compute the virtual valuation function of the following probability distributions and show which of these distributions are regular (meaning the virtual valuation function is strictly increasing).

- (a) The uniform distribution F(z) = z/a on [0, a] with a > 0,
- (b) The exponential distribution $F(z) = 1 e^{-\lambda z}$ with rate $\lambda > 0$ on $[0, \infty)$,

Exercise 3. Consider a single-item auction where bidder i draws his valuation from his own regular distribution F_i , that is, the probability distributions F_1, \ldots, F_n can be different but all virtual valuation functions $\varphi_1, \ldots, \varphi_n$ are strictly increasing.

- (a) Give a formula for the winner's payment in an optimal auction, in terms of the bidders' virtual valuation functions φ_i . Verify that if $F_1 = \cdots = F_n$ are uniform probability distributions on [0,1], then your formula yields Vickrey auction with reserve price 1/2.
- (b) Find an example of an optimal auction in which the highest bidder does not win, even if he has a positive virtual valuation.

Hint: It suffices to consider two bidders with valuations from different uniform distributions.

We assume that the bidders $1,\ldots,n$ are sorted in the order < so that $\frac{b_1}{w_1} \ge \cdots \ge \frac{b_n}{w_n}$. Consider the following greedy allocation rule $x^G = (x_1^G,\ldots,x_n^G) \in X$, which for given bids $b = (b_1,\ldots,b_n)$ selects a subset of bidders so that $\sum_{i=1}^n x_i^G w_i \le W$ using the following procedure.

- 1. Pick winners in the order < until one does not fit and then halt.
- 2. Return either the solution from the first step or the highest bidder, whichever creates more social surplus.

Exercise 4. Prove that the Knapsack auction allocation rule x^G induced by the greedy (1/2)approximation algorithm covered in the lecture is monotone.

^{*}Information about the course can be found at http://kam.mff.cuni.cz/~balko/