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Spanning Trees.

Spanning tree
A spanning tree T of a connected, undirected graph G is a tree composed
of all the vertices and some (or perhaps all) of the edges of G . In other
words, a spanning tree of G is a selection of edges of G that form a tree
spanning every vertex. That is, every vertex lies in the tree, but no cycles
(or loops) are allowed. On the other hand, every bridge of G must belong
to T . A spanning tree of a connected graph G can also be defined as a
maximal set of edges of G that contains no cycle, or as a minimal set of
edges that connect all vertices.
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Spanning Trees.

Counting spanning trees
The number t(G ) of spanning trees of a connected graph is a well-studied
invariant. In some cases, it is easy to calculate t(G ) directly. For example,
if G is itself a tree, then t(G ) = 1, while if G is the cycle graph Cn with n
vertices, then t(G ) = n. For any graph G , the number t(G ) can be
calculated using Kirchhoff’s matrix-tree theorem.
Here are some known results concerning counting spanning trees of graphs.

1 Complete graph Kn : t(Kn) = nn−2 (Cayley’s formula),

2 Complete bipartite graph Kn,m : t(Kn,m) = mn−1nm−1,

3 n-dimensional cube graph Qn : t(Qn) = 22
n−n−1

n∏
k=2

k(nk).
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Spanning Trees

Kirchhoff Matrix-Tree Theorem
The celebrated Kirchhoff Matrix-Tree Theorem is the following statement.

Theorem (Kirchhoff (1847))

All cofactors of Laplacian matrix L(G ) are equal to t(G ).

More convenient form of this result were obtained by A. K. Kel’mans and
V. M. Chelnokov.

Theorem (Kel’mans, Chelnokov (1974))

Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of the Laplace matrix
L(G ) of a n point graph G . Then

t(G ) =
1

n

n∏
k=2

λk .
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Spanning Trees

The Temperley’s formula
One more convenient way to count spanning treses.

Theorem (Temperley, H. N. V. (1964))

The number of spanning trees of a n point graph G is given by the formula

t(G ) = det(L(G ) +
1

n2
J),

where J is n × n matrix all of whose elements are unity.

Now we will present an uniform proof for all the three previous theorems.
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Spanning Trees

Proof of Kirchhoff, Kal’mans - Chelnokov and Temperley
theorems

Proof.

Let L = L(G ) be the Laplacian matrix of G with eigenvalues
0 = λ1 ≤ λ2 ≤ . . . ≤ λn. The (i , j)-cofactor of a matrix M is by definition
(−1)i+j det M(i , j), where M(i , j) is the matrix obtained from M by
deleting row i and column j .
Let lxy be the (x , y)-cofactor of L. Note that lxy does not depend on an
ordering of the vertices of G .
We set N = t(G ) and show that

N = lxy = det(L +
1

n2
J) =

1

n
λ2 . . . λn for any x , y ∈ V (G ).
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Spanning Trees

Let LS , for S ⊂ V (G ), denote the matrix obtained from L by deleting the
rows and columns indexed by S , so that lxx = det L{x}. The equality
N = lxx follows by induction on n, and for fixed n > 1 on the number of
edges incident with x . Indeed, if n = 1 then lxx = 1. Otherwise, if x has
degree 0, then lxx = 0 since L{x} has zero row sums. Now, if xy is an
edge, then deleting this edge from G decreases lxx by det L{x ,y}, which by
induction is the number of spanning trees of G with edge xy collapsing to
a point, which is the number of spanning trees containing the edge xy .
This shows N = lxx . Since the sum of the columns of L is zero, so that one
column is minus the sum of the other columns, we have lxx = lxy for any
x , y .
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Spanning Trees

Now we consider the Laplacian polynomial

µ(G , t) = det(tI − L) = t
n∏

i=2
(t − λi ) for graph G . Then

(−1)n−1λ2 . . . λn is the coefficient of t, that is,
d

dt
det(tI − L)|t=0.

We note that
d

dt
det(tI − L) =

∑
x

det(tI − L{x}).

Putting t = 0 we obtain λ2 . . . λn =
∑
x

lxx = nN.

Finally, the eigenvalues of L + 1
n2

J are 1
n and λ2, . . . , λn, so

det(L +
1

n2
J) =

1

n
λ2 . . . λn.
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Spanning Trees

A generalization of the Matrix-Tree-Theorem was obtained by Kelmans
(1967) who gave a combinatorial interpretation to all the coefficients of
µ(G , x) in terms of the numbers of certain subforests of the graph. This
result has been obtained even in greater generality (for weighted graphs)
by Fiedler and Sedlác̆ek.

Theorem (Kel’mans (1967))

If

µ(G , x) = xn − c1xn−1 + . . .+ (−1)icix
n−i + . . .+ (−1)n−1cn−1x

then
ci =

∑
S⊂V , |S|=n−i

t(GS),

where t(H) is the number of spanning trees of H, and GS is obtained from
G by identifying all vertices of S to a single one.
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Spanning Trees

From the last theorem we can derive useful corollary.

Corollary

The degree of Laplacian polynomial µ(G , x) is equal to n = |V (G )|.
Its coefficients c1 and cn−1 are given by the formulas c1 = 2|E (G )| and
cn−1 = |V (G )| · t(G ).

Hence, the number of vertices |V (G )|, number of edges |E (G )| and the
number of spanning trees t(G ) are uniquely defined by the Laplacian
polynomial.
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Spanning Trees

Some recursive formulas for t(G)
Now we give a few recursive formulas for the number of spanning trees
employed in graph theory by W. Feussner (1904) and J. W. Moon (1970).

Denote by G − e the graph obtained by removing edge e from the graph
G . Let G\e be the graph obtained from graph G by contracting edge e. In
other words, G\e is obtained by deleting edge e and identifying its ends.
Then the following formula takes a place.

t(G ) = t(G − e) + t(G\e).

Proof. We note that the set of spanning trees of a given graph G
decomposed in two disjoint sets. First set consist of tree containing
selected edge e ∈ E (G ) and second set consist of trees that do not contain
e. The number of spanning trees that contains e is exactly t(G\e)
because each of them corresponds to a spanning tree of G\e. The number
of spanning tree that do not contain e is t(G − e), since each of them is
also a spanning tree of G − e and vice versa.
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Spanning Trees

Denote by Gs,e the graph resulting from subdivision of an edge e of a
graph G . Then

t(Gs,e) = t(G\e) + 2t(G − e) = t(G ) + t(G − e).

Proof. Again, the number of spanning trees of X that contains e is
t(G\e). All of them also the spanning trees of t(Gs,e). If a spanning tree
of G do not contains e then it can be extended to be a spanning tree of
t(Gs,e) in two different ways. Hence, t(Gs,e) = t(G\e) + 2t(G − e). By
the previous statement t(G\e) + 2t(G − e) = t(G ) + t(G − e).
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Spanning Trees

Let Gp,e denotes the results of adding an edge in parallel an edge e of a
graph G . Then

t(Gp,e) = t(G ) + t(G\e).

Proof. Distinguishing spanning trees that contain an edge e and that are
not we have

t(Gp,e) = t(G − e) + 2t(G\e) = t(G ) + t(G\e).
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Spanning Trees

Let G1 and G2 are the graphs with exactly one vertex in common. Then

t(G1 ∪ G2) = t(G1) · t(G2),

where V (G1 ∪ G2) = V (G1) ∪ V (G2) and E (G1 ∪ G2) = E (G1) ∪ E (G2).

Proof. Let T be a spanning tree of G1 ∪ G2. Then T1 = T ∩ G1 and
T2 = T ∩ G2 are spanning trees for G1 and G2 respectively. Moreover
G1 ∩ G2 = {v}, where v is the common vertex of G1 and G2. Conversely,
let T1 and T2 are respective spanning trees for G1 and G2. Then
T1 ∩ T2 = {v} and T = T1 ∪ T2 is a spanning tree of G1 ∪ G2.
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Chebyshev polynomials

The Chebyshev polynimial of the first kind is defined by the formula

Tn(x) = cos(n arccos x).

Eqivalently,

Tn(x) =
(x +

√
x2 − 1)n + (x −

√
x2 − 1)n

2
.

Also, Tn(x) satisfies the recursive relation

T0(x) = 1, T1(x) = x , Tn(x) = 2x · Tn−1(x)− Tn−2(x), n ≥ 2.
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Chebyshev polynomials

The Chebyshev polynimial of the second kind is defined by the formula

Un(x) =
sin((n + 1) arccos x)

sin(arccos x)
.

Eqivalently,

Un(x) =
(x +

√
x2 − 1)n+1 − (x −

√
x2 − 1)n+1

2
√

x2 − 1
.

Also, Un(x) satisfies the recursive relation

U0(x) = 1, U1(x) = 2x , Un(x) = 2x · Un−1(x)− Un−2(x), n ≥ 2.

We have Un(cos kπ
n+1) = 0, k = 1, 2, . . . , n. Hence

Un(x) = 2n
n∏

k=1

(x − cos
kπ

n + 1
).
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Chebyshev polynomials

Since

Un(x) = (−1)nUn(−x) = 2n
n∏

k=1

(x + cos
kπ

n + 1
)

we obtain

U2
n(x) =

n∏
k=1

(4x2 − 4 cos2
kπ

n + 1
).

Polynomials Tn(x) and Un−1(x) are related by the following identity

T 2
n (x) + (x2 − 1)U2

n−1(x) = 1.
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Chebyshev polynomials

Consider n × n matrix

An(x) =



2x −1 0 0 . . . 0 0
−1 2x −1 0 . . . 0 0
0 −1 2x −1 . . . 0 0
0 0 −1 2x . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 2x −1
0 0 0 0 . . . −1 2x


.

Then det An(x) = Un(x).
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