
6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 1/16

ca_plot (generic function with 1 method)

Cellular automata

As powerful computational engines.
As discrete dynamical system simulators.
As conceptual vehicles for studying pattern formation and complexity.
As original models of fundamental physics.

Complex Behavior
Emergence
Self-organization
Autopoesis

Emergence

As collective self-organisation.
As unprogrammed functionality.
As interactive complexity.
As incompressible unfolding.

Class1 rules leading to homogenous states, all cells stably ending up with the same value:



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 2/16

100 200 300 400 500

50

100

150

200

250

300

100 200 300 400 500

50

100

150

200

250

300

Class2 rules leading to stable structures or simple periodic patterns:

ca_plot(250, 500, 300)⋅

ca_plot(254, 500, 300)⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 3/16

100 200 300 400 500

50

100

150

200

250

300

100 200 300 400 500

50

100

150

200

250

300

ca_plot(4, 500, 300)⋅

ca_plot(108, 500, 300)⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 4/16

Class3 rules leading to seemingly chaotic, non-periodic behavior:

100 200 300 400 500

50

100

150

200

250

300

ca_plot(30, 500, 300)⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 5/16

100 200 300 400 500

50

100

150

200

250

300

Class4 rules leading to complex patterns and structures propagating locally in the lattice:

100 200 300 400 500

50

100

150

200

250

300

ca_plot(90, 500, 300)⋅

ca_plot(54, 500, 300)⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 6/16

100 200 300 400 500

50

100

150

200

250

300

100 200 300 400 500

50

100

150

200

250

300

ca_plot(110, 500, 300)⋅

ca_plot(110, 500, 300, rnd_init = false, seed_at = [200, 220, 300, 302])⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 7/16

100 200 300 400 500

50

100

150

200

250

300

draw_life_ca (generic function with 1 method)

On the edge of chaos
Perhaps the most exciting implication [of CA representation of biological phenomena] is the possibility that life
had its origin in the vicinity of a phase transition and that evolution re�lects the process by which life has gained
local control over a successively greater number of environmental parameters a�fecting its ability to maintain
itself at a critical balance point between order and chaos. (Langton 1990: 13)

  110 111 108 106 102 126 78 46 228
000 0 1 0 0 0 0 0 0 0
001 1 1 0 1 1 1 1 1 1
010 1 1 1 0 1 1 1 1 1
011 1 1 1 1 0 1 1 1 1
100 0 0 0 0 0 1 0 0 0
101 1 1 1 1 1 1 0 1 1
110 1 1 1 1 1 1 1 0 1
111 0 0 0 0 0 0 0 0 1
Class 4 2 2 3 3 3 1 2 1

Game of life

Life’s transition rule goes as follows. At each time step t exactly one of three things can happen to a
cell:

Birth: If the cell state at t−1 was 0 (dead), the cell state becomes 1 (alive) if exactly three
neighbors were 1 (alive) at t−1;

ca_plot(90, 500, 300, rnd_init = false)⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 8/16

Survival: If the cell state at t−1 was 1 (alive), the cell state is still 1 if either two or three
neighbors were 1 (alive) at t−1;
Death: If the cell state at t−1 was 1 (alive), the cell state becomes 0 (dead) if either fewer than
two or more than three neighbors were 1 (alive) at t−1 (cells can die of “loneliness” or
“overpopulation”).

draw_life_ca(steps = 500, random_init=true)⋅

draw_life_ca(pattern = [
        true true true;

⋅
⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 9/16

        true  false false;
        true true true
])

⋅
⋅
⋅

draw_life_ca(pattern = [
        true true false;
        false  true true;
        true false false
])

⋅
⋅
⋅
⋅
⋅

draw_life_ca(
    grid_size = (10,10),
    pattern = [
        false false false

⋅
⋅
⋅
⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 10/16

        true  true true;
        false false false
    ])

⋅
⋅
⋅

draw_life_ca(
    grid_size = (10, 10),
    pattern = [
        true true false;
        true  true false;
        false false false
    ])

⋅
⋅
⋅
⋅
⋅
⋅
⋅

draw_life_ca(
    pattern = [

⋅
⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 11/16

hex2rgba (generic function with 1 method)

draw_fire (generic function with 1 method)

        true true false false ;
        true false false false;
        false false false true;
        false false true true
    ])

⋅
⋅
⋅
⋅
⋅

function draw_fire(;
        steps = 200,
        size = (400, 400)
    )
    DEAD, ALIVE, BURNING = 1, 2, 3

    neighbors_rule = let prob_combustion=0.0001, prob_regrowth=0.01
        Neighbors(Moore(1)) do neighborhood, cell
            if cell == ALIVE
                if BURNING in neighborhood
                    BURNING
                else
                    rand() <= prob_combustion ? BURNING : ALIVE
                end
            elseif cell == BURNING
                DEAD
            else
                rand() <= prob_regrowth ? ALIVE : DEAD
            end
        end
    end

    # Set up the init array and output (using a Gtk window)
    init = fill(ALIVE, size...)
    output = ArrayOutput(init; tspan=1:steps)

    # Run the simulation, which will save a gif when it completes
    sim!(output, neighbors_rule)

    s_colors = Dict(
        DEAD => hex2rgba(0x000000),
        BURNING => hex2rgba(0xFF4500),
        ALIVE => hex2rgba(0x7A871E)
    )

    animation = @animate for i in 1:steps
        plot(map(s -> s_colors[s], output[i]))
    end

    gif(animation, fps=10)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 12/16

draw_diff (generic function with 1 method)

draw_fire()⋅

function draw_diff(;
        steps = 300,
        size = (400, 400)
    )

    neighbors_rule = Neighbors(VonNeumann(1)) do neighborhood, cell
            sum(neighborhood) / 4.
    end
    

    # Set up the init array and output
    init = zeros(Float64, size...)
    init[195:205, 195:205] .= 1000.
    output = ArrayOutput(init; tspan=1:steps)

    # Run the simulation, which will save a gif when it completes
    sim!(output, neighbors_rule)

    vox_log(x) = log(0.1 + x)
    
    animation = @animate for i in 1:steps
        plot(map(v -> RGBA(1., 0., 0., vox_log(v) / vox_log(1000.)), output[i]))
    end

    gif(animation, fps=20)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 13/16

draw_majority (generic function with 1 method)

draw_diff()⋅

function draw_majority(;
        r = 1,
        steps = 200,
        grid_size = (400, 400)
    )

    neighbors_rule = Neighbors(Moore(r)) do neighborhood, cell
        s = reduce(neighborhood, init = Int(cell)) do s, c
            s += c ? 1. : -1.
        end
        s > 0 ? true : false
    end
    

    # Set up the init array and output
    init = rand(Bool, grid_size...)
    output = ArrayOutput(init; tspan=1:steps)

    # Run the simulation, which will save a gif when it completes
    sim!(output, neighbors_rule)

    
    animation = @animate for i in 1:steps
        plot(Colors.Gray.(output[i]))
    end

    gif(animation, fps=10)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 14/16

draw_parity (generic function with 1 method)

draw_majority()⋅

draw_majority(r=4)⋅

function draw_parity(;
        r = 1,
        steps = 200,
        grid_size = (400, 400),
        random_init = false,
        pattern = [false true false;
                   true  false true;
                   false true false]

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 15/16

    )

    neighbors_rule = Neighbors(Moore(r)) do neighborhood, cell
        reduce(neighborhood, init = cell) do s, c
            s = xor(s, c)
        end
    end
    
    # Set up the init array and output
    if random_init
        init = rand(Bool, grid_size...)
    else
        init = zeros(Bool, grid_size...)
        s = size(pattern)
        off = div.(s, 2)
        c = div.(grid_size, 2)
        init[c[1] - off[1]:c[1] - off[1] + s[1]-1,
             c[2]-off[2]:c[2]-off[2]+s[2]-1] .= pattern
    end
    
    output = ArrayOutput(init; tspan=1:steps)

    # Run the simulation, which will save a gif when it completes
    sim!(output, neighbors_rule)

    
    animation = @animate for i in 1:steps
        plot(Colors.Gray.(output[i]))
    end

    gif(animation, fps=10)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

draw_parity()⋅



6/4/2021 🎈 ca.jl — Pluto.jl

https://online.orgpad.org/edit?id=6d76827c-c515-11eb-117a-27c5c037e083# 16/16

draw_parity(r=2)⋅


