```
ca_plot (generic function with 1 method)
```


Cellular automata

- As powerful computational engines.
- As discrete dynamical system simulators.
- As conceptual vehicles for studying pattern formation and complexity.
- As original models of fundamental physics.
- Complex Behavior
- Emergence
- Self-organization
- Autopoesis

Emergence

- As collective self-organisation.
- As unprogrammed functionality.
- As interactive complexity.
- As incompressible unfolding.

Class1 rules leading to homogenous states, all cells stably ending up with the same value:

■ 1 0


```
- ca_plot(250, 500, 300)
```


1 |0

- ca_plot(254, 500, 300)

Class2 rules leading to stable structures or simple periodic patterns:

■ $1 \quad \square 0$

- ca_plot(4, 500, 300)

$\square 1 \mid \square 0$

Class3 rules leading to seemingly chaotic, non-periodic behavior:

■ $1 \quad \square 0$

ca_plot(30, 500, 300)

1
0
ca_plot(90, 500, 300)

Class4 rules leading to complex patterns and structures propagating locally in the lattice:

$\square 1 \mid \square 0$

ca_plot (54, 500, 300)
$\square 1 \quad \square 0$

ca_plot(110, 500, 300)

ca_plot(110, 500, 300, rnd_init = false, seed_at = [200, 220, 300, 302])


```
- ca_plot(90, 500, 300, rnd_init = false)
```

draw_life_ca (generic function with 1 method)

On the edge of chaos
Perhaps the most exciting implication [ofCA representation of biological phenomena] is the possibility that life had its origin in the vicinity of a phase transition and that evolution reflects the process by which life has gained local control over a successively greater number of environmental parameters affecting its ability to maintain itselfat a critical balance point between order and chaos. (Langton 1990: 13)

	110	111	108	106	102	126	78	46	228
000	0	1	0	0	0	0	0	0	0
001	1	1	0	1	1	1	1	1	1
010	1	1	1	0	1	1	1	1	1
011	1	1	1	1	0	1	1	1	1
100	0	0	0	0	0	1	0	0	0
101	1	1	1	1	1	1	0	1	1
110	1	1	1	1	1	1	1	0	1
111	0	0	0	0	0	0	0	0	1
Class	4	2	2	3	3	3	1	2	1

Game of life

Life's transition rule goes as follows. At each time step t exactly one of three things can happen to a cell:

- Birth: If the cell state at t-1 was o (dead), the cell state becomes 1 (alive) if exactly three neighbors were 1 (alive) at t-1;
- Survival: If the cell state at t-1 was 1 (alive), the cell state is still 1 if either two or three neighbors were 1 (alive) at $\mathrm{t}-1$;
- Death: If the cell state at $\mathrm{t}-1$ was 1 (alive), the cell state becomes 0 (dead) if either fewer than two or more than three neighbors were 1 (alive) at t-1 (cells can die of "loneliness" or "overpopulation").

50

100

150

200

draw_life_ca(steps = 500, random_init=true)


```
draw_life_ca(pattern = [
    true true false;
    false true true;
    true false false
])
```

2

4

6

8

```
draw_life_ca(
grid_size = (10,10),
pattern = [
    false false false
```



```
draw_life_ca(
    pattern = [
```

true true false false ; true false false false; false false false true; false false true true
])

```
hex2rgba (generic function with 1 method)
draw_fire (generic function with 1 method)
    function draw_fire(;
        steps = 200,
        size = (400, 400)
    )
    DEAD, ALIVE, BURNING = 1, 2, 3
    neighbors_rule = let prob_combustion=0.0001, prob_regrowth=0.01
        Neighbors(Moore(1)) do neighborhood, cell
            if cell == ALIVE
                    if BURNING in neighborhood
                    BURNING
            else
                    rand() <= prob_combustion ? BURNING : ALIVE
            end
            elseif cell == BURNING
            DEAD
            else
            rand() <= prob_regrowth ? ALIVE : DEAD
            end
        end
        end
        # Set up the init array and output (using a Gtk window)
        init = fill(ALIVE, size...)
        output = ArrayOutput(init; tspan=1:steps)
        # Run the simulation, which will save a gif when it completes
        sim!(output, neighbors_rule)
        s_colors = Dict(
            DEAD => hex2rgba(0x000000),
            BURNING => hex2rgba(0xFF4500),
            ALIVE => hex2rgba(0x7A871E)
        )
        animation = @animate for i in 1:steps
            plot(map(s -> s_colors[s], output[i]))
        end
        gif(animation, fps=10)
    end
```



```
draw_fire()
```

draw_diff (generic function with 1 method)

```
function draw_diff(;
            steps = 300,
            size = (400, 400)
    )
    neighbors_rule = Neighbors(VonNeumann(1)) do neighborhood, cell
                    sum(neighborhood) / 4.
        end
        # Set up the init array and output
        init = zeros(Float64, size...)
        init[195:205, 195:205] .= 1000.
        output = ArrayOutput(init; tspan=1:steps)
        # Run the simulation, which will save a gif when it completes
        sim!(output, neighbors_rule)
        vox_log(x) = log(0.1 + x)
        animation = @animate for i in 1:steps
        plot(map(v -> RGBA(1., 0., 0., vox_log(v) / vox_log(1000.)), output[i]))
        end
        gif(animation, fps=20)
end
```



```
draw_diff()
```

draw_majority (generic function with 1 method)

```
function draw_majority(;
    r = 1,
    steps = 200,
    grid_size = (400, 400)
    )
    neighbors_rule = Neighbors(Moore(r)) do neighborhood, cell
        s = reduce(neighborhood, init = Int(cell)) do s, c
            s += c ? 1. : -1.
            end
            s > 0 ? true : false
        end
        # Set up the init array and output
        init = rand(Bool, grid_size...)
        output = ArrayOutput(init; tspan=1:steps)
        # Run the simulation, which will save a gif when it completes
        sim!(output, neighbors_rule)
        animation = @animate for i in 1:steps
            plot(Colors.Gray.(output[i]))
        end
        gif(animation, fps=10)
    end
```


draw_majority ()

draw_majority (r=4)
draw_parity (generic function with 1 method)

```
function draw_parity(;
    r = 1,
    steps = 200,
    grid_size = (400, 400),
    random_init = false,
    pattern = [false true false;
        true false true;
        false true false]
```

)
 neighbors_rule \(=\) Neighbors(Moore(r)) do neighborhood, cell
 reduce(neighborhood, init \(=\) cell) do s, c
 \(\mathrm{s}=\operatorname{xor}(\mathrm{s}, \mathrm{c})\)
 end
 end
 \# Set up the init array and output
 if random_init
 init \(=\) rand(Bool, grid_size...)
 else
 init = zeros(Bool, grid_size...)
 s = size(pattern)
 off = div.(s, 2)
 c = div.(grid_size, 2)
 init \([c[1]-\) off[1]:c[1] - off[1] \(+s[1]-1\),
 c[2]-off[2]:c[2]-off[2]+s[2]-1]. \(=\) pattern
 end
 output = ArrayOutput(init; tspan=1:steps)
 \# Run the simulation, which will save a gif when it completes
 sim!(output, neighbors_rule)
 animation = @animate for in 1:steps
 plot(Colors.Gray. (output[i]))
 end
 gif(animation, fps=10)
 end

[^0]
draw_parity (r=2)

[^0]: - draw_parity()

