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ca_plot (generic function with 1 method)

Cellular automata

As powerful computational engines.
As discrete dynamical system simulators.
As conceptual vehicles for studying pattern formation and complexity.
As original models of fundamental physics.

Complex Behavior
Emergence
Self-organization
Autopoesis

Emergence

As collective self-organisation.
As unprogrammed functionality.
As interactive complexity.
As incompressible unfolding.

Class1 rules leading to homogenous states, all cells stably ending up with the same value:
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Class2 rules leading to stable structures or simple periodic patterns:

ca_plot(250, 500, 300)⋅

ca_plot(254, 500, 300)⋅
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ca_plot(4, 500, 300)⋅

ca_plot(108, 500, 300)⋅
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Class3 rules leading to seemingly chaotic, non-periodic behavior:
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ca_plot(30, 500, 300)⋅
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Class4 rules leading to complex patterns and structures propagating locally in the lattice:
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ca_plot(90, 500, 300)⋅

ca_plot(54, 500, 300)⋅
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ca_plot(110, 500, 300)⋅

ca_plot(110, 500, 300, rnd_init = false, seed_at = [200, 220, 300, 302])⋅
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draw_life_ca (generic function with 1 method)

On the edge of chaos
Perhaps the most exciting implication [of CA representation of biological phenomena] is the possibility that life
had its origin in the vicinity of a phase transition and that evolution re�lects the process by which life has gained
local control over a successively greater number of environmental parameters a�fecting its ability to maintain
itself at a critical balance point between order and chaos. (Langton 1990: 13)

  110 111 108 106 102 126 78 46 228
000 0 1 0 0 0 0 0 0 0
001 1 1 0 1 1 1 1 1 1
010 1 1 1 0 1 1 1 1 1
011 1 1 1 1 0 1 1 1 1
100 0 0 0 0 0 1 0 0 0
101 1 1 1 1 1 1 0 1 1
110 1 1 1 1 1 1 1 0 1
111 0 0 0 0 0 0 0 0 1
Class 4 2 2 3 3 3 1 2 1

Game of life

Life’s transition rule goes as follows. At each time step t exactly one of three things can happen to a
cell:

Birth: If the cell state at t−1 was 0 (dead), the cell state becomes 1 (alive) if exactly three
neighbors were 1 (alive) at t−1;

ca_plot(90, 500, 300, rnd_init = false)⋅
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Survival: If the cell state at t−1 was 1 (alive), the cell state is still 1 if either two or three
neighbors were 1 (alive) at t−1;
Death: If the cell state at t−1 was 1 (alive), the cell state becomes 0 (dead) if either fewer than
two or more than three neighbors were 1 (alive) at t−1 (cells can die of “loneliness” or
“overpopulation”).

draw_life_ca(steps = 500, random_init=true)⋅

draw_life_ca(pattern = [
        true true true;

⋅
⋅
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        true  false false;
        true true true
])

⋅
⋅
⋅

draw_life_ca(pattern = [
        true true false;
        false  true true;
        true false false
])

⋅
⋅
⋅
⋅
⋅

draw_life_ca(
    grid_size = (10,10),
    pattern = [
        false false false

⋅
⋅
⋅
⋅
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        true  true true;
        false false false
    ])

⋅
⋅
⋅

draw_life_ca(
    grid_size = (10, 10),
    pattern = [
        true true false;
        true  true false;
        false false false
    ])

⋅
⋅
⋅
⋅
⋅
⋅
⋅

draw_life_ca(
    pattern = [

⋅
⋅
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hex2rgba (generic function with 1 method)

draw_fire (generic function with 1 method)

        true true false false ;
        true false false false;
        false false false true;
        false false true true
    ])

⋅
⋅
⋅
⋅
⋅

function draw_fire(;
        steps = 200,
        size = (400, 400)
    )
    DEAD, ALIVE, BURNING = 1, 2, 3

    neighbors_rule = let prob_combustion=0.0001, prob_regrowth=0.01
        Neighbors(Moore(1)) do neighborhood, cell
            if cell == ALIVE
                if BURNING in neighborhood
                    BURNING
                else
                    rand() <= prob_combustion ? BURNING : ALIVE
                end
            elseif cell == BURNING
                DEAD
            else
                rand() <= prob_regrowth ? ALIVE : DEAD
            end
        end
    end

    # Set up the init array and output (using a Gtk window)
    init = fill(ALIVE, size...)
    output = ArrayOutput(init; tspan=1:steps)

    # Run the simulation, which will save a gif when it completes
    sim!(output, neighbors_rule)

    s_colors = Dict(
        DEAD => hex2rgba(0x000000),
        BURNING => hex2rgba(0xFF4500),
        ALIVE => hex2rgba(0x7A871E)
    )

    animation = @animate for i in 1:steps
        plot(map(s -> s_colors[s], output[i]))
    end

    gif(animation, fps=10)
end

⋅
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draw_diff (generic function with 1 method)

draw_fire()⋅

function draw_diff(;
        steps = 300,
        size = (400, 400)
    )

    neighbors_rule = Neighbors(VonNeumann(1)) do neighborhood, cell
            sum(neighborhood) / 4.
    end
    

    # Set up the init array and output
    init = zeros(Float64, size...)
    init[195:205, 195:205] .= 1000.
    output = ArrayOutput(init; tspan=1:steps)

    # Run the simulation, which will save a gif when it completes
    sim!(output, neighbors_rule)

    vox_log(x) = log(0.1 + x)
    
    animation = @animate for i in 1:steps
        plot(map(v -> RGBA(1., 0., 0., vox_log(v) / vox_log(1000.)), output[i]))
    end

    gif(animation, fps=20)
end

⋅
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draw_majority (generic function with 1 method)

draw_diff()⋅

function draw_majority(;
        r = 1,
        steps = 200,
        grid_size = (400, 400)
    )

    neighbors_rule = Neighbors(Moore(r)) do neighborhood, cell
        s = reduce(neighborhood, init = Int(cell)) do s, c
            s += c ? 1. : -1.
        end
        s > 0 ? true : false
    end
    

    # Set up the init array and output
    init = rand(Bool, grid_size...)
    output = ArrayOutput(init; tspan=1:steps)

    # Run the simulation, which will save a gif when it completes
    sim!(output, neighbors_rule)

    
    animation = @animate for i in 1:steps
        plot(Colors.Gray.(output[i]))
    end

    gif(animation, fps=10)
end
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draw_parity (generic function with 1 method)

draw_majority()⋅

draw_majority(r=4)⋅

function draw_parity(;
        r = 1,
        steps = 200,
        grid_size = (400, 400),
        random_init = false,
        pattern = [false true false;
                   true  false true;
                   false true false]

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
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    )

    neighbors_rule = Neighbors(Moore(r)) do neighborhood, cell
        reduce(neighborhood, init = cell) do s, c
            s = xor(s, c)
        end
    end
    
    # Set up the init array and output
    if random_init
        init = rand(Bool, grid_size...)
    else
        init = zeros(Bool, grid_size...)
        s = size(pattern)
        off = div.(s, 2)
        c = div.(grid_size, 2)
        init[c[1] - off[1]:c[1] - off[1] + s[1]-1,
             c[2]-off[2]:c[2]-off[2]+s[2]-1] .= pattern
    end
    
    output = ArrayOutput(init; tspan=1:steps)

    # Run the simulation, which will save a gif when it completes
    sim!(output, neighbors_rule)

    
    animation = @animate for i in 1:steps
        plot(Colors.Gray.(output[i]))
    end

    gif(animation, fps=10)
end
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draw_parity()⋅
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draw_parity(r=2)⋅


