1 Overview

In the last lecture we used witness matrix to find successor matrix for APSP algorithm. Here our aim is to find a witness matrix in $O(n^w)$ time. First we look at a randomised algorithm which will run in $O(n^w \cdot \text{poly}(\log n))$ then we give a slightly different randomised algorithm which we derandomise and give a deterministic algorithm.

2 Witnessing Boolean Matrix Multiplication

We have two matrices A and B over $\{0, 1\}$ i.e., two boolean matrices. Our goal is to find a witness matrix W such that

$$w_{ij} = \begin{cases}
 k & \text{if } a_{ik} = 1 \text{ and } b_{kj} = 1 \\
 0 & \text{otherwise}
\end{cases}$$

2.1 Unique Witness in $O(n^w)$ time

Let $C = AB$ is the product under Boolean matrix multiplication. A witness for c_{ij} is an index $k \in \{1, \ldots, n\}$ such that $a_{ik} = b_{kj} = 1$. Observe that $c_{ij} = 1$ if and only if it has some witness k. Let,

$$P_{ij} = \{k \mid k \text{ is a witness for } (i, j)\}$$

We want to find witnesses for all i, j such that $|P_{ij}| = 1$ that is which has unique witness.

1. Compute \hat{A} obtained by setting $\hat{a}_{ik} = k \cdot a_{ik}$
2. $\hat{Z} = \hat{A} \cdot B$ product over integers
3. if each entry of C has a unique witness then
 \[W = \hat{Z} \text{ is a solution.} \]
end

Algorithm 1: Find Unique Witness

Step 3 implies that \hat{Z} yields a matrix that contains witness for all entries in the matrix C that have a unique witness.

Since we multiply the elements of the matrix A by at most n, it does not affect the running time for matrix multiplication. So the running time is $O(n^w)$.
3 Find All Witnesses

General approach of multiplying \(a_{ik} \) by \(x_k \) or by \(2^k \) does not work in \(O(n^w) \) time because the monomeals can be long and it may take \(n^3 \) time to multiply them.

The idea is to take a subset of indices, \(S \subseteq [1, n] \) such that \(|P_{ij} \cap S| = 1 \). Then we can find the witnesses in \(S \) in \(O(n^w) \) time.

Define \(A^S \) and \(B^S \) such that each column of \(A^S \) and each row of \(B^S \) corresponding to the indices not chosen in \(S \) is turned into an all-zero vector. Suppose that the entry \(C_{ij} \) has a unique witness in the set \(S \). Then the corresponding entry in the integer matrix multiplication of \(A^S \) and \(B^S \) is the index of this unique witness.

Let, \(P_{ij} = p \). We may find the number of witnesses \(p \) by using integer matrix multiplication to compute \(Z = AB \), and then looking at the entry \(z_{ij} \). We assume that \(p \geq 2 \), since we are done, otherwise.

\[
\begin{align*}
\text{Input:} & \quad \text{Two nxn matrices } A \text{ and } B \text{ over 0,1} \\
\text{Output:} & \quad \text{Witness matrix } W \text{ for the Boolean matrix } C = AB \\
& \text{1 } W \leftarrow -AB \\
& \text{2 for } t \leftarrow 0 \text{ to log } n \text{ do} \\
& \quad r \leftarrow 2^t \\
& \quad \text{repeat} \\
& \quad \quad \text{choose random } R \subseteq 1, ..., n \text{ with } |R| = r \\
& \quad \quad \text{compute } A^R \text{ and } B^R \\
& \quad \quad Z \leftarrow A^R B^R \\
& \quad \quad \text{forall } (i, j) \text{ do} \\
& \quad \quad \quad \text{if } W_{ij} < 0 \text{ and } Z_{ij} \text{ is witness} \text{ then} \\
& \quad \quad \quad \quad W_{ij} \leftarrow Z_{ij} \\
& \quad \quad \text{end} \\
& \quad \text{end} \\
& \quad \text{until } \lceil 3.77 \log n \rceil \text{ times ;} \\
& \text{end} \\
& \text{3 forall } (i, j) \text{ do} \\
& \quad \text{if } W_{ij} < 0 \text{ then} \\
& \quad \quad \text{find witness } W_{ij} \text{ by brute force} \\
& \quad \text{end} \\
& \text{end}
\end{align*}
\]

Algorithm 2: Randomised Algorithm for BPWM

Let \(x \) be an integer such that \(n/2 \leq px \leq n \). We claim that a random set of indices \(S \subseteq \{1, ..., n\} \) is very likely to contain a unique witness i.e, \(|P_{ij}| = 1 \).

To verify this claim, consider an urn containing \(n \) balls, one for each of the \(n \) indices; the balls corresponding to witnesses are colored white, and the rest are colored black. The following lemma then shows that the probability that \(S \) contains a unique witness is reasonably large.

Lemma 1. Suppose an urn contains \(n \) balls of which \(w \) are white, and \(n - w \) are black. Consider choosing \(x \) balls at random (without replacement), where \(n/2 \leq px \leq n \). Then \(Pr[\text{exactly one white ball is chosen}] \geq 1/2e \).
\textbf{Proof.} Among the x balls, exactly 1 can be white in $\binom{x}{w}(n-x-1)$ ways, and x balls can be chosen in $\binom{x}{w}$ ways.

\[\Pr[\text{exactly one white ball is chosen}] = \frac{\binom{x}{w}(n-x)!(n-w)!}{x!(x-1)!n!(n-w-x+1)!} \]

\[= w.x \prod_{i=0}^{w-1} \frac{1}{(n-i)} \prod_{j=0}^{w-2} (n-x-j) \]

\[= \frac{wx}{n} \prod_{j=0}^{w-2} \frac{n-x-j}{n-1-j} \]

\[\geq \frac{wx}{n} \prod_{j=0}^{w-2} \frac{n-x-j-(w-j-1)}{n-1-j-(w-j-1)} \]

\[= \frac{wx}{n} \prod_{j=0}^{w-2} \frac{n-w-(x-1)}{n-w} \]

\[= \frac{wx}{n} (1 - \frac{n-x-j}{n-1-j})^{w-1} \]

\[\geq 1/2(1 - \frac{1}{w})^{w-1} \geq \frac{1}{2e} \]

Therefore probability that it finds a unique witness $\geq 1/2e$

Therefore probability of failure (in $a\log n$ steps) = $(1 - 1/2e)^{a\log n}$

$= [(1 - 1/2e)^2]^{a\log n} \leq 1/n^3$

Therefore probability that the above algorithm fails for all the pair (By union bound) = $n^2 \cdot \frac{1}{n^3} = 1/n$

\subsection{Running Time:}

Let, random variable $X_{ij} = \begin{cases} 1 & \text{if we did not find an witness} \\ 0 & \text{otherwise} \end{cases}$

\[\Pr[X_{ij} = 1] \leq 1/n^3 \]

Expected number of indeces for which we did not find an witness,

\[\mathbb{E}(X) = \mathbb{E} \left(\sum X_{ij} \right) = \sum \mathbb{E}(X_{ij}) \leq n^2/n^3 = 1/n \]

The running time for the above algorithm is

\[= n^w \cdot \log^2 n + \frac{1}{n} n^2 \]
4 Deterministic Algorithm for BPWM

4.1 Some Background

Definition 2. Let n and k be fixed positive integers. A collection \mathcal{F} of k-sets of $[n]$ is a completely separating system if, for all distinct $X_1, X_2 \in [n]$, there is an $S \in \mathcal{F}$ for which $X_1 \in S$ and $X_2 \notin S$.

Let $X = X_1 \cup X_2$ and $|X| = x$.

Call S good for this X if above condition holds. \mathcal{F} is also called (n,k,x) seperating set. Let l denote the minimum size of such a \mathcal{F}.

Suppose, we know $|P_{ij}| \leq k$, then we want to find $(n,1,k)$ seperating collection so that we can reduce the problem to unique witness finding problem. let us find the minimum value for l in this case.

$$\Pr[\text{No } S \text{ is good for some } X] = (1 - \frac{1}{2^k})^l$$

$$\Pr[\text{No } S \text{ is good for all } x] = (1 - \frac{1}{2^k})^{l \cdot \binom{n}{k}} 2^k \text{ [by Union Bound]}$$

Therefore if some good set exists,

$$(1 - \frac{1}{2^k})^l \cdot \binom{n}{k} 2^k < 1$$

$$e^{-l/2} \cdot n^k 2^k < 1$$

$$(2n)^k < e^{l/2}$$

$$k \log n < \frac{l}{2k}$$

$$l \geq 2^k k \log n$$

4.2 Algorithm For BPWM

Define $c = \lceil \log \log n + 9 \rceil$ and $\alpha = \frac{8}{2^c}$. For two matrices C and R with $\{0, 1\}$ entries define $Y = C \land R$ by $Y_{ij} = C_{ij} \land R_{ij}$.

The algorithm is as follows. Besides A, B and $C = AB$ it uses two additional matrices: R and D.

The way to perform steps 5 and 6 are described later.

while not all witnesses are known do

1. Let L denote the set of all positive entries of C for which there are no known witnesses.
2. Let R be the all 1 matrix.
3. repeat
4. $D \leftarrow A(B \land R)$ (The matrix multiplication is over the integers)
5. Let L' denote the set of all entries of D in L which are at most c.
6. Find witnesses for all entries in L'.
7. $R \leftarrow$ good matrix (see definition of good below).
8. until $1 + 3 \log_{4/3} n$ times ;
9. end

Algorithm 3: Find Witness

A matrix R is good (in step above) if the following two conditions hold:
(i) The total sum of the entries of \(D = A(B \land R) \) in \(L \) is at most \(3/4 \) of what this sum was while using the previous matrix \(R \).

(ii) The fraction of entries of \(D \) in \(L \) that go from a value bigger than \(c \) to 0 is at most \(\alpha \).

Lemma 3. If \(R \leftarrow R \land S \) in step 6 where \(S \) is a random \(\{0, 1\} \) matrix, then the new \(R \) is good with probability at least \(1/6 \).

Proof. The lemma follows from the following three claims:

Claim 4. \(\Pr[\text{the sum of entries of } D \text{ in } L \leq \frac{3}{4}W] \geq 1/3 \).

Proof. Let \(X = \text{new sum of entries of } D \text{ in } L \).

\[
\mathbb{E}[X] = \frac{\text{previous sum of entries of } D \text{ in } L \times 2}{2} = \frac{W}{2}
\]

\[
\Pr[X > \frac{3}{4}W] \leq \frac{\mathbb{E}(X)}{\frac{3}{4}W} = \frac{W/2}{\frac{3}{4}W} = 2/3 \text{ [Using Markov’s Inequality]}
\]

Therefore, \(\Pr[\text{the sum of entries of } D \text{ in } L \leq \frac{3}{4}W] \geq 1/3 \).

Claim 5. The probability that a fixed entry of \(D \) which is at least \(c \) drops down to 0 \(\leq \frac{1}{2^c} \).

Proof. If a entry in the integer multiplicatin \(c \) then were \(c \) 1s, summing up to give \(c \). All of these \(c \) entries should become 0. Each entry goes to 0 with probability \(1/2 \).

If we assume that entries of \(S \) are \(c \)-wise independent,

\(\Pr[\text{all of the } c \text{ entries goes to 0}] = 1/2^c \).

Therefore the probability that a fixed entry of \(D \) which is at least \(c \) drops down to 0 \(\leq \frac{1}{2^c} \).

Claim 6. The probability that more than a fraction \(\alpha \) of the entries of \(D \) in \(L \) drop from at least \(c \) to 0 is at most \(\frac{1}{8} \).

Proof. Let \(T \) be the no of values which are greater than \(c \) that goes to 0. and \(n_{\geq c} \) be the values garter than \(c \).

\[
\Pr[T \geq \alpha n_{\geq c}] \leq \frac{\mathbb{E}(T)}{\alpha \cdot n_{\geq c}} = \frac{1/2^c \cdot n_{\geq c}}{\alpha \cdot n_{\geq c}} \quad \text{[From claim 4]}
\]

\[
= \frac{1}{2^c} \cdot \frac{1}{\alpha} = 1/8
\]

Therefore \(\Pr[R \text{ is good}] = 1/3 - 1/8 > 1/6 \).
4.3 c-wise ϵ-dependent \{0,1\} random variables

Define $\epsilon = 2c + 1$. The crucial point is to observe that the proof of the above lemma still holds, with almost no change, if the matrix S is not totally random but its entries are chosen from a c-wise ϵ-dependent distribution. Recall that if in random variables whose range is \{0, 1\} are c-wise ϵ-dependent then every subset of $i \leq c$ of them attains each of the possible 2^i configurations of 0 and 1 with probability that deviates from $1/2^i$ by at most ϵ.

Lemma 7. If $R \leftarrow R \land S$ in step 6 where the entries of S are chosen as n^2 random variables that are c-wise ϵ-dependent, then the new R is good with probability at least $1/12 - 2\epsilon$

We note that in fact it is sufficient to choose only one column and copy it n times. The proof is by the following modified three claims, whose proof is analogous to that of the corresponding previous ones.

Claim 8. The probability that the sum of entries of D in L goes down by at least a factor of $3/4$ is at least $1/3 - 2\epsilon$

Claim 9. The probability that a fixed entry of D which is at least c drops down to 0 is at most $1/2^c + \epsilon$

Claim 10. The probability that more than a fraction α of the entries of D in L drop from at least c to 0 is at most $1/4$

Proof.

Pr[a entry with value c in D goes to 0] = $1/2^c + \epsilon$.

Pr[a entry with value at least c in D goes to 0] $\leq (\frac{1}{2^c} + \epsilon)$

Pr[more than α fraction drop from at least c to 0] $\leq (\frac{1}{2^c} + \epsilon) \frac{1}{\alpha} < \frac{2^c}{2^c \alpha} = 1/4$.

Thereby Pr[R is good] = $1/3 - 2\epsilon - 1/4 = 1/12 - 2\epsilon$.

Think of each entries of R as a random variable. Therefore we have n^2 random variables. As shown in [1] and [2] there are explicit probability spaces with n^2 random variables which are c-wise ϵ-dependent, whose size is

$$(\log n.c. \frac{1}{\epsilon})^{2+o(1)}$$

If we take $\epsilon = \frac{1}{2^c + 1}$. No of such R we can have is

$$(\log n.c.2^{c+1})^{2+o(1)} = poly \log n$$

Now suppose that in step 6 all the matrices S defined by such a probability space are searched, until a good one is found.

Note that during the performance of step 6, while considering all possible matrices S provided by our distribution, we can accomplish step 5 as well. This is true since c-wise ϵ-dependence guarantees that every entry in L will drop to precisely 1 for some of the matrices S and hence, if we replace each matrix multiplication in the search for a good S by two matrix multiplications, we complete steps 5 and 6 together.
4.4 Running Time:

Checking whether a matrix is good requires only matrix multiplication plus $O(n^2)$ operations. Therefore the inner loop (starting at step 3) takes $(\text{polylog } n)O(n^w)$. In every iteration of the inner loop starting at 3 at most α fraction of the entries of L are thrown (i.e. their witness will not be found in this iteration of the outer loop).

Therefore at least $(1 - \alpha)^{1 + 3\log 4/3n}$ fraction of the entries of D in L will not be thrown during the completion of these iterations. For those entries, which are at least $1/2$ of the entries in L, a witness is found. Therefore, only $O(\log n)$ iterations of the outer loop are required, implying the desired $O(n^w(\log n)^{O(1)})= \tilde{O}(n^w)$ total running time.

References

