1 Overview

In the last lecture we defined simple tree decomposition and stated that for given graph \(G \) if \((T, f)\) is simple tree decomposition then \(|V(T)| \leq |V(G)| \).

In this lecture, we will prove the above result and introduce the concept of nice tree decomposition and how to convert simple tree decomposition to nice tree decomposition without increasing its tree width. We conclude this module with application of dynamic programming, using tree decomposition, to find the independent set of graph.

2 Simple Tree Decomposition

Definition 1. For given graph \(G \) and its tree decomposition \((T, f)\); \(T \) is said to be simple tree decomposition if for any two distinct nodes \(t_1 \) and \(t_2 \) in \(V(T) \), neither \(f(t_1) \not\subset f(t_2) \) nor \(f(t_2) \not\subset f(t_1) \).

Lemma 2. For given graph \(G \) and its simple tree decomposition \((T, f)\), \(|V(T)| \leq |V(G)| \).

Proof. Pick an arbitrary node \(r \in V(T) \) and consider \(T \) as a rooted tree with \(r \) as the root. By the connectivity property of tree decomposition, for every vertex \(v \in V(G) \) the set \(\{b|v \in f(b)\} \) induces a connected subtree of \(T \). Thus there is a unique node \(b_v \in V(T) \) which is the node of \(T \) closest to \(r \) out of all nodes in \(\{b|v \in f(b)\} \). We say that \(v \) peaks at \(b_v \). Each vertex \(v \in V(G) \) peaks at exactly one node \(b_v \) in \(V(T) \).

We argue that for every node \(b \in V(T) \) there is a vertex \(v \in V(G) \) that peaks at \(b \). Suppose not. If \(b \) is the root \(r \) this implies that \(f(b) = \phi \), contradicting that \((T, f)\) is simple as \(f(b) \) will be contained in all \(f(b_1) \) where \(b_1 \in V(G) \) and \(b \neq b_1 \). If \(b \) is not the root \(r \) then \(b \) has a parent \(b' \) which is closer to the root \(r \). Since no vertex \(v \in V(G) \) peaks at \(b \) it follows that \(f(b) \subset f(b') \) contradicting that \((T, f)\) is simple.

We now have that every node \(b \) of \(V(T) \) has some vertex \(G \) that peaks at it, and every vertex \(v \) of \(G \) peaks in exactly one node of \(T \) . Thus \(|V(T)| \leq |V(G)| \).
3 Nice Tree Decomposition

Definition 3. A tree decomposition (T, f) of G is called nice if it has the following properties

P_1 T is root at node r

P_2 $f(r) = 0$ and for every leaf l, $f(l) = \phi$

P_3 every node in b in T has at most 2 children

P_4 If b has 2 children, say, b_1 and b_2 then $f(b) = f(b_1) = f(b_2)$.

P_5 If b has only one child, say, b_1 then one of the following two conditions is true.

(i) $f(b_1) \subset f(b)$ and $|f(b)| = |f(b_1)| + 1$

(ii) $f(b) \subset f(b_1)$ and $|f(b_1)| = |f(b)| + 1$

Consider the graph given in Fig 1 and its tree decomposition in Fig 2.

![Figure 1: Graph G](image1)

![Figure 2: Nice Tree Decomposition of graph G](image2)

For node b, if the first case of property P_5 holds, then it is known as introduce node. If later case holds, we call it forget node.

Lemma 4. If graph G has tree-decomposition of tree-width k then it also has a nice tree decomposition of the same tree width. Furthermore, given any tree decomposition, we can construct nice tree decomposition in polynomial time.
Proof. We start with considering T as an unrooted tree and setting $(T', f') = (T, f)$. We then proceed to modify (T', f') in order for it to have the desired properties. Throughout the process we will maintain that (T', f') is a tree decomposition of G of width k. First we add to every leaf l of T' another leaf l' and set $f'(l') = \phi$. Then we select an arbitrary leaf of T', call it r and root the tree T' at r. At this point (T', f') is a tree decomposition of G satisfying properties $\textbf{P1}$ and $\textbf{P2}$.

As long as T' has a node $b \in V(T')$ with more than two children, we proceed as follows. Let b_1, b_2, \ldots, b_p be the children of b. We make a new node b' and add it to T' in the following manner. The parent of b' is set to b, and for each child b_i of b with $i \geq 2$ we make b' the parent of b_i instead. Finally we set $f'(b') = f'(b)$. This operation maintains that (T', f') is a tree decomposition of G. Furthermore now b only have two children namely b_1 and b'. The problem has shifted from b to b' but b' has degree one less than what b had before this step. Hence each step adds one node to the tree T' and for one vertex with more than two children, decreases the number of children by 1. We will continue this process till all the nodes in T' has at most two children. At this point (T', f') is a tree decomposition of G satisfying properties $\textbf{P1, P2, P3}$. Following is the simple illustration of the process when b has three children.

![Illustration](image)

We now run a new process, aimed to make (T', f') satisfy property $\textbf{P4}$. As long as there exists a vertex $b \in V(T')$ with b_1, b_2 its children and $f'(b) \neq f'(b_1) \neq f'(b_2)$, we proceed as follows. We add two new nodes b'_1, b'_2 to T'. Make b the parent of b'_1, b'_2 and change the parent of b_1, b_2 to be b'_1, b'_2 respectively. We set $f'(b'_1) = f'(b'_2) = f'(b)$. At the completion of step the number of vertices in $V(T')$ which contradicts to property $\textbf{P4}$ is reduced by one. Hence, after finite iterations (T', f') is a tree decomposition of G satisfying properties $\textbf{P1, P2, P3, P4}$. Following diagram illustrate this step.

![Diagram](image)

Finally we run a process aimed at making (T', f') satisfy property $\textbf{P5}$. Consider there exist vertex b in $V(T)$ with child b_1 such that $f(b) \subset f(b')$ and $|f(b)| + k = |f(b')|$ for some constant integer $k > 1$. We will introduce new vertex b' as child of b and make b' parent of b_1. Let $u \in f(b_1) \setminus f(b)$. Assign $f'(b') = f'(b) \cup u$. After this step, b satisfies the property $\textbf{P5}$ but b' violate it. But, now
the difference between $f(b')$ and its child $f(b_1)$ is $k - 1$. Hence after k iterations, all the newly introduced vertices in the path b to b_1 will satisfy the property P5. For vertex c in $V(T)$ with child c_1 such that $f(c) \supset f(c_1)$ and $|f(c)| = |f(c_1)| + k$. We introduce new vertex c' in similar way but we assign $f'(c') = f'(c) \setminus \{u\}$ where $u \in f'(c) \setminus f(c_1)$.

The total number of steps in all of the processes described above is $O(kn)$ since each step adds a new node to T'. With appropriate data structures, each step of each process can be completed in time $O(k^{O(1)})$ and hence we can construct nice tree decomposition in polynomial time.

4 Dynamic Programming

Many algorithms on trees are based on dynamic programming and are polynomial time solvable. We defined tree width to measure how accurately a given graph can be approximated to tree. Lower the tree width of graph, more closely it can be associated with tree. Thus it is natural to think that some of the dynamic programming algorithms that work for trees could be lifted to also work on graphs of bounded treewidth. This turns out to be the case – with a few notable exceptions most problems that are polynomial time solvable on trees are also polynomial time solvable on graphs of bounded treewidth. We will use the independent set problem as an example to illustrate this concept.

Before jumping into the dynamic programming, we will first define some useful concepts. T_b is tree rooted at b and defined as $T_b = \{w | w$ is an descendant of b in $T\} \cup \{b\}$.

Definition 5. For given graph G and its tree decomposition (T, f), for $b \in V(T)$ define set $V_b = \bigcup_{w \in T_b} f(w)$

$V(G)$ is divided (note that it is not a partition) into V_b for all $b \in V(T)$. Define $V_1, V_2 \subseteq V(G)$ as $V_1 = V_b$ and $V_2 = \bigcup_{x \in V(T) \setminus T_b} f(x)$. Since G is t- decomposable, removing $t + 1$ points will disconnect the graph and hence $V_1 \cap V_2 \leq t + 1$.

Definition 6. For given graph G and $V_b \subseteq V(G)$, boundary of V_b is defined as $Z_{V_b} = \{v | v \in V_b, \exists (v, w) \in E(G) \text{ and } w \in V(G) \setminus V_b\}$

Since graph is t decomposable, $|Z_{V_i}| \leq t + 1$ for any $V_i \subseteq V(G)$. Let us consider the following example. We define function $\beta : V(G) \rightarrow 2^{V(T) \setminus \phi}$ and function $f : V(T) \rightarrow 2^{V(G)}$ as written in the table.
In the above example, following are some of the subsets and their boundaries

- \(V_h = \{7, 8, 10, 11\}; \ Z_{V_h} = \{8\} \)
- \(V_f = \{5, 6, 7, 8, 9, 10, 11\}; \ Z_{V_f} = \{5, 6\} \)
- \(V_d = \{5, 6, 7, 8, 10, 11, 9, 12, 13\}; \ Z_{V_d} = \{5, 6\} \)

The idea is to store sufficient information in the boundary of the subset which will help us to determine Independent set of entire graph by looking only at boundary.

For \(V_b \subseteq V(G) \) Let us define the following collection of sets

\[\mathcal{F}_b = \{ A \cap V_b | A \text{ is independent set of } G \text{ and } V_{b_i} \subseteq V_b \} \]
Definition 7. For given graph G its independent set A we define $A_1 = A \cap V_b$ and $A_2 = A\setminus A_1$. We say F_b is good family if there exist $B \in F_b$ such that

1. $B \cap Z_{V_b} = A_1 \cap Z_{V_b}$
2. $B \cup A_2$ is an independent set.
3. $|B \cup A_2| > |A|$.

But the size of family can be as large as $2^{|V(G)|}$. We can reduce the upper bound on the size of set by defining following collection of sets.

$$\hat{F}_V(Z') = \{X|X \in F_V \text{ and } X \cap Z = Z'\}$$

where $Z' \subseteq Z$. This definition allow us select the better candidate among the V_b and leave out the candidate which forms the sub-optimal solution. We can reduce our focus to the above set. Since the size of boundary is bounded we now have 2^{t+1} possible subsets.

Now instead of working on graph G, we will work on its tree decomposition. As proved earlier, every graph has nice tree decomposition. We only need to see procedure at different type of nodes of nice tree viz. leafs, nodes which has two children and introduce node or forget node.

We now describe the procedure and prove that the i^{th} family computed is good, by induction on i. First we compute the family F_b for every leaf b, and sets $F_b = \{\phi\}$. Since (T, f) is a nice tree decomposition of G it follows that $f(b) = \phi$ and therefore $V_b = \phi$. Thus, for any optimal solution OPT of G, there is a set $B \in F_b$, namely $B = \phi$, such that $B \cap f(b) = OPT \cap f(b) = \phi$ and $(OPT \setminus V_b) \cup B = OPT$ is an optimal solution to G.

Assume now that families of the i first nodes processed by the procedure are all good, and consider the $i + 1$'st node $b \in V(T)$ to be processed. If b is a leaf we have already shown that F_b is good, so assume now that b is not a leaf. All the children of b have been processed. The node b has one or two children in T, since (T, f) is a nice tree decomposition. If b has one child b_1 then F_{b_1} is good by the induction hypothesis. Similarly if b has two children b_1 and b_2 then F_{b_1} and F_{b_2} are both good by the induction hypothesis. It suffices to show that, in either case, the family F_b is good. If b has two children b_1 and b_2 then

$$F^*_b = \{X_1 \cup X_2 | X_1 \in F_{b_1}, X_2 \in F_{b_2} \text{ and } X_1 \cap f(b) = X_2 \cap f(b)\}.$$

We wish to prove that F_b is good. To that end, consider any optimal solution $OPT \subseteq V(G)$. Since F_{b_1} is good there is a set $X_1 \in F_{b_1}$ such that $OPT_1 = (OPT \setminus V_{b_1}) \cup X_1$ is an optimal solution as well, and $X_1 \cap f(b) = OPT \cap f(b)$. Here we used that (T, f) is a nice tree decomposition, and that therefore $f(b_1) = f(b_2) = f(b)$. Similarly, since F_{b_2} is good there is a set $X_2 \in F_{b_2}$ such that $OPT_2 = (OPT_1 \setminus V_{b_2}) \cup X_2$ is an optimal solution, and $X_2 \cup f(b) = OPT_1 \cup f(b)$. Consider the set $X = X_1 \cup X_2$. The definition of F^*_b implies that $X \in F^*_b$, and $OPT_2 = (OPT \setminus V(b)) \cup X$ is an optimal solution as well. Finally $X \cap f(b) = OPT \cap f(b)$. We conclude that in this case F^*_b is good.

If b has one child b_1 then

$$F^*_b = \{X_1 \cup S | X_1 \in F_{b_1} \text{ and } S \subseteq f(b) \setminus f(b_1)\}.$$

6
We wish to prove that F_b^* is good. To that end, consider any optimal solution $OPT \subseteq V(G)$. Since F_{b_1} is good there is a set $X_1 \in F_{b_1}$ such that $OPT_1 = (OPT \setminus V_{b_1}) \cup X_1$ is an optimal solution as well, and $X_1 \cap f(b_1) = OPT \cap f(b_1)$. Let $S = OPT \cap (f(b) \setminus f(b_1))$, and observe that S satisfies $S = OPT_1 \cap (f(b) \setminus f(b_1))$ as well. Let $X = X_1 \cup S$, we have that $X \in F_{b_1}$, $OPT_1 = (OPT \setminus V_b) \cup X$ is an optimal solution, and $OPT \cap f(b) = S \cup (X_1 \cap f(b_1) \cap f(b)) = X \cap f(b)$. Thus F_b^* is good family, concluding the proof of correctness of the procedure.