Exercise sheet #6 Set Theory 2024

Definition 1. A binary relation $R \subseteq X \times X$ is

- 1. total if $\forall a \in X \exists b \in X(R(a, b))$ and
- 2. well-founded if $\forall S \subset X(S \neq \emptyset \Rightarrow \exists m \in S \forall s \in S(\neg R(s, m))).$

Exercise 1. The following statement is known as the Axiom of Dependent Choice (DC): For every nonempty X and every total binary relation $R \subset X \times X$ there exists a sequence of elements of $X(x_n)_{n \in \omega}$ such that for all $n \in \omega R(x_n, x_{n+1})$. Use DC to prove that a binary relation $R \subseteq X \times X$ is well-founded if and only if there is no infinite sequence $(x_n)_{n \in \omega}$ such that $R(x_{n+1}, x_n)$ for all $n \in \omega$.

Exercise 2. Suppose that A is at most countable and B is uncountable. Prove that $B \setminus A$ is uncountable.

Exercise 3. If S is uncountable and $S \subseteq T$, then T is uncountable.

Exercise 4. If R well-orders A and $X \subseteq A$, then R well-orders X.

Exercise 5. If \prec and \prec are well-orders on S, T, respectively, then their lexicographic product is a well-order of $S \times T$.

Exercise 6. If A is finite and R is a binary relation on A, then R is well-founded if and only if R is acyclic on A.

Exercise 7. Present an example of an infinite set A and an acyclic binary relation R on A which is not well-founded.

Exercise 8. In this exercise, the notation $\forall \alpha \in ON(\varphi(\alpha))$ abbreviates $\forall \alpha(\alpha \text{ is an ordinal} \rightarrow \varphi(\alpha))$. Prove:

- 1. $\forall \alpha \in \text{ON} \forall z \in \alpha (z \in \text{ON})$
- 2. $\forall \alpha, \beta \in ON(\alpha \cap \beta \in ON)$
- 3. $\forall \alpha, \beta \in ON(\alpha \subseteq \beta \leftrightarrow (\alpha \in \beta \lor \alpha = \beta))$
- 4. $\forall \alpha, \beta, \gamma \in ON(\alpha \in \beta \land \beta \in \gamma \to \alpha \in \gamma)$
- 5. $\forall \alpha \in ON(\alpha \notin \alpha)$
- 6. $\forall \alpha, \beta \in ON(\alpha \in \beta \lor \beta \in \alpha \lor \alpha = \beta)$
- 7. Every nonempty set of ordinals has a \in -least element.
- 8. $\{x : x \text{ is an ordinal}\}$ is not a set.