Exercise sheet #5 Set Theory 2024

Definition 1.

- 1. For sets a and b, the expression $|a| \le |b|$ means that there exists an injective function $f: a \to b; |a| = |b|$ means $|a| \le |b| \land |b| \le |a|$.
- 2. A set a is *finite* if there exists a natural number n such that |a| = |n|. If a is not finite, then we say that a is *infinite*.
- 3. A set a is *D*-finite if for all $b \in \mathcal{P}(a) \setminus \{a\}$ there is no injective mapping $a \to b$. If a is not D-finite, then we say that a is *D*-infinite.
- 4. A set a is S-finite if there exists a total order \leq on a such that every nonempty $b \subseteq a$ has a \leq -least and a \leq -greatest element. If a is not S-finite, then we say that a is S-infinite.
- 5. A set a is *T*-finite if every nonempty $x \in \mathcal{P}(a)$ has a \subseteq -maximal element. If a is not T-finite, then we say that a is *T*-infinite.
- 6. A set *a* is *P*-finite if every partial ordering of *a* contains a maximal element.
- 7. A set a is *L*-finite if every linear ordering of a contains a maximal element.
- 8. A set a is *Decomposition-finite* if it is empty, a singleton, or there exists a partition $a = a_1 \cup a_2$ where $|a_1|, |a_2| < |a|$.

Exercise 1. Let *a* be a set. Prove that the following are equivalent:

- 1. *a* is finite.
- 2. a is S-finite.
- 3. $\mathcal{P}(\mathcal{P}(a))$ is D-finite.
- 4. *a* is T-finite.

Exercise 2. Let a be a set such that for every set b, if there exists a surjective function $a \to b$, then b is P-finite. Show that if there exists an injective function $c \to a$, then c is P-finite, and that a itself is P-finite.

Exercise 3. Let x be an infinite set, and suppose that (x, \leq) is a linear order. Then there exists $y \subseteq x$ such that either (y, \leq) or (y, \geq) has no maximal element.

Exercise 4. A set x is L-finite if and only if it is finite or not linearly orderable.

Exercise 5. A set x is P-finite if and only if for each partial order \leq on x there exists a positive integer M such that every \leq -chain of X has length at most M.

Exercise 6. Every D-finite set is decomposition-finite.

Exercise 7. Every decomposition-finite set is either T-finite or not well-orderable.

Exercise 8. If s is D-infinite, then there exists $p \subset s$ such that $|p| = |\omega|$.

Exercise 9. If a is infinite, then $\mathcal{P}(\mathcal{P}(a))$ is D-infinite.

Exercise 10. If a is T-finite, then for every partition of a into two sets at least one part is T-finite.

Exercise 11. If a is T-finite, then $\mathcal{P}(a)$ is D-finite.