Exercise sheet #3 Set Theory 2024

Definition 1.

- 1. If a is a set, we define s(a) as $a \cup \{a\}$.
- 2. A set a is said to be *inductive* if $\emptyset \in a$ and $\forall b \in a(s(b) \in a)$.
- 3. A set a is said to be *transitive* if $b \in c \in a$ implies $b \in a$.
- 4. The Axiom of Infinity is the statement "There exists an inductive set".

Exercise 1. Prove:

- 1. a set a is transitive if and only if $\bigcup a \subseteq a$.
- 2. if a and b are inductive sets, then $a \cap b$ is also inductive.
- 3. if t is a transitive set, then $\bigcup s(t) = t$.
- 4. if a is an inductive set, then $b \coloneqq \{c \in a : c \subseteq a\}$ is inductive.
- 5. if a is inductive, then $\{x \in a : x \text{ is transitive}\}$ is inductive.
- 6. if a is inductive, then $\{x \in a : x \text{ is transitive and } x \notin x\}$ is inductive.
- 7. if a is inductive then so is $\{x \in a : x = \emptyset \text{ or } x = s(y) \text{ for some } y\}$.

Exercise 2. Let ω denote the class of all sets x such that, for all inductive sets $I, x \in I$. Prove:

- 1. ω is a set.
- 2. ω is transitive and inductive.
- 3. \in is a total order on ω .
- 4. There is no function $f: \omega \to \omega$ such that $f(s(a)) \in f(a)$ for all $a \in \omega$.
- 5. Let a be a subset of ω such that $\emptyset \in a$ and if $b \in a$ then $s(b) \in a$. Prove $a = \omega$.