Exercise sheet #2 Set Theory 2024

Exercise 1. If R, S are binary relations (in particular, sets) then dom R, ran $R, R \circ S, R^{-1}$ are sets.

Exercise 2. Suppose that R is a binary relation and A, B are sets. Prove or give a counterexample:

- 1. $R[A \cup B] = R[A] \cup R[B]$
- 2. $R[A \cap B] = R[A] \cap R[B]$
- 3. $R[A \setminus B] = R[A] \setminus R[B]$
- 4. dom $R = \operatorname{ran} R^{-1}$
- 5. $R^{-1} \circ R = \operatorname{Id}_{\operatorname{dom} R}$
- 6. $R \circ R^{-1} = \operatorname{Id}_{\operatorname{ran} R}$

Exercise 3. Let $f: X \to Y$ be a function.

- 1. Prove that f is injective if and only if there exists $g: \mathcal{R}_f \to X$ such that for all $x \in X$ we have $(x,x) \in g \circ f$ (g is called a *left inverse* of f).
- 2. (This is a trick question) Prove that f is surjective if and only if there exists $g: \mathcal{R}_f \to X$ such that for all $y \in Y$ we have $(y, y) \in f \circ g$ (g is called a *right inverse* of f).
- 3. Prove that f is injective and surjective (bijective) if and only if there exists $g: Y \to X$ which is a left and right inverse of f.

Exercise 4. Suppose that R is a reflexive and transitive binary relation on a set X. Define a relation E on X by E(a,b) if and only if $R(a,b) \wedge R(b,a)$.

- 1. Prove that E is an equivalence relation.
- 2. Let R/E be the following relation on X/E: $R/E([a]_E, [b]_E) \leftrightarrow R(a, b)$.
 - (a) Prove that the definition of R/E does not depend on the choice of representatives.
 - (b) Prove that R/E is a partial order on X/E.

Exercise 5. Let X be a nonempty set. Show that any $S \subseteq P(X)$ has a supremum and an infimum in $(P(X), \subseteq_{P(X)})$.

Exercise 6. Let $\operatorname{Fn}(X,Y)$ denote the set $\bigcup \{Y^Z : Z \subseteq X\}$, and define \leq on $\operatorname{Fn}(X,Y)$ by

$$f \leq g \leftrightarrow f \subseteq g$$
.

Prove that \leq is an ordering. Under what conditions does sup F exist for $F \subseteq \operatorname{Fn}(X,Y)$?