Exercise sheet #7 Set Theory 2023

In this exercise sheet, we use \oplus and \otimes to denote the sum and lexicographic product of orders. That is, if $(A, <_A)$ and $(B, <_B)$ are disjoint linear orders, then $A \oplus B$ denotes the pair $(A \cup B, <_+)$ and $A \otimes B$ denotes $(A \times B, <_\times)$, where

$$<_{+} = \{(a,b): a,b \in A \land a <_{A} b\} \cup \{(a,b): a,b \in B \land a <_{B} b\} \cup \{(a,b): a \in A \land b \in B\}, \text{ and } <_{\times} = \{((a_{1},b_{1}),(a_{2},b_{2})): a_{1} <_{A} a_{2} \lor (a_{1} = a_{2} \land b_{1} <_{B} b_{2})\}$$

Exercise 1. Find two disjoint linear orders $(a, <_a)$ and $(b, <_b)$ such that $a \oplus b$ is not isomorphic to $b \oplus a$.

Exercise 2. Find two disjoint linear orders $(a, <_a)$ and $(b, <_b)$ such that $a \otimes b$ is not isomorphic to $b \otimes a$.

Exercise 3. Suppose that $(a, <_a)$ and $(b, <_b)$ are disjoint well-ordered sets. Show that $a \oplus b$ is well-ordered.

Exercise 4. Suppose that $(a, <_a)$ and $(b, <_b)$ are disjoint well-ordered sets. Show that $a \otimes b$ is well-ordered.

Exercise 5. Let (P, \leq_P) and (Q, \leq_Q) be partially ordered sets. A function $f: P \to Q$ is an *embedding of partial orders* if it satisfies $\forall x, y \in P(x \leq_P y \Leftrightarrow f(x) \leq_Q f(y))$. Show that an order embedding is always injective.

Exercise 6. Let (P, \leq_P) be a partially ordered set. For each subset A of P, define

$$A^{\uparrow} := \{ x \in P : \forall a \in A (a \leq_P x) \}$$
 and $A^{\downarrow} := \{ x \in P : \forall a \in A (x \leq_P a) \}$

A cut of $(P \leq_P)$ is a pair $(A, B) \in \mathcal{P}(P)^2$ such that $A^{\uparrow} = B$ and $B^{\downarrow} = A$. Let $\mathcal{C}(P)$ denote the set of all cuts of P.

- 1. Show that $(\mathcal{C}(P), \leq)$ is a partially ordered set, where $(A_1, B_1) \leq (A_2, B_2)$ iff $A_1 \subseteq A_2$.
- 2. Show that if (A, B) is a cut, then $(A^{\uparrow})^{\downarrow} = A$.
- 3. Show that if $(A^{\uparrow})^{\downarrow} = A$, then (A, A^{\uparrow}) is a cut.
- 4. Show that the function $\ell: P \to \mathcal{C}(P)$ given by $\ell(p) = (\{x \in P : x \leq p\}, \{x \in P : x \leq p\}^{\uparrow})$ is an embedding.
- 5. Show that for all $Q \subseteq P$, the set $\ell[Q]$ has a supremum and an infimum in $(\mathcal{C}(P), \leq)$.