Exercise sheet \#7
 Set Theory 2023

In this exercise sheet, we use \oplus and \otimes to denote the sum and lexicographic product of orders. That is, if $\left(A,<_{A}\right)$ and $\left(B,<_{B}\right)$ are disjoint linear orders, then $A \oplus B$ denotes the pair $\left(A \cup B,<_{+}\right)$and $A \otimes B$ denotes $(A \times B,<\times)$, where

$$
\begin{aligned}
& <_{+}=\left\{(a, b): a, b \in A \wedge a<_{A} b\right\} \cup\left\{(a, b): a, b \in B \wedge a<_{B} b\right\} \cup\{(a, b): a \in A \wedge b \in B\}, \text { and } \\
& <_{x}=\left\{\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right): a_{1}<_{A} a_{2} \vee\left(a_{1}=a_{2} \wedge b_{1}<_{B} b_{2}\right)\right\}
\end{aligned}
$$

Exercise 1. Find two disjoint linear orders $\left(a,<_{a}\right)$ and $\left(b,<_{b}\right)$ such that $a \oplus b$ is not isomorphic to $b \oplus a$.
Exercise 2. Find two disjoint linear orders $\left(a,<_{a}\right)$ and $\left(b,<_{b}\right)$ such that $a \otimes b$ is not isomorphic to $b \otimes a$.
Exercise 3. Suppose that $\left(a,<_{a}\right)$ and $\left(b,<_{b}\right)$ are disjoint well-ordered sets. Show that $a \oplus b$ is well-ordered.
Exercise 4. Suppose that $\left(a,<_{a}\right)$ and $\left(b,<_{b}\right)$ are disjoint well-ordered sets. Show that $a \otimes b$ is well-ordered.
Exercise 5. Let $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ be partially ordered sets. A function $f: P \rightarrow Q$ is an embedding of partial orders if it satisfies $\forall x, y \in P\left(x \leq_{P} y \Leftrightarrow f(x) \leq_{Q} f(y)\right)$. Show that an order embedding is always injective.

Exercise 6. Let $\left(P, \leq_{P}\right)$ be a partially ordered set. For each subset A of P, define

$$
\begin{aligned}
A^{\uparrow} & :=\left\{x \in P: \forall a \in A\left(a \leq_{P} x\right)\right\} \text { and } \\
A^{\downarrow} & :=\left\{x \in P: \forall a \in A\left(x \leq_{P} a\right)\right\}
\end{aligned}
$$

A cut of $\left(P \leq_{P}\right)$ is a pair $(A, B) \in \mathcal{P}(P)^{2}$ such that $A^{\uparrow}=B$ and $B^{\downarrow}=A$. Let $\mathcal{C}(P)$ denote the set of all cuts of P.

1. Show that $(\mathcal{C}(P), \leq)$ is a partially ordered set, where $\left(A_{1}, B_{1}\right) \leq\left(A_{2}, B_{2}\right)$ iff $A_{1} \subseteq A_{2}$.
2. Show that if (A, B) is a cut, then $\left(A^{\uparrow}\right)^{\downarrow}=A$.
3. Show that if $\left(A^{\uparrow}\right)^{\downarrow}=A$, then $\left(A, A^{\uparrow}\right)$ is a cut.
4. Show that the function $\ell: P \rightarrow \mathcal{C}(P)$ given by $\ell(p)=\left(\{x \in P: x \leq p\},\{x \in P: x \leq p\}^{\uparrow}\right)$ is an embedding.
5. Show that for all $Q \subseteq P$, the set $\ell[Q]$ has a supremum and an infimum in $(\mathcal{C}(P), \leq)$.
