Exercise sheet #5 Set Theory 2023

Definition 1.

- 1. For sets a and b, the expression $|a| \le |b|$ means that there exists an injective function $f: a \to b; |a| = |b|$ means $|a| \le |b| \land |b| \le |a|$.
- 2. A set a is *finite* if there exists a natural number n such that |a| = |n|. If a is not finite, then we say that a is *infinite*.
- 3. A set a is *D*-finite if for all $b \in \mathcal{P}(a) \setminus \{a\}$ there is no injective mapping $a \to b$. If a is not D-finite, then we say that a is *D*-infinite.
- 4. A set a is S-finite if there exists a total order \leq on a such that every nonempty $b \subseteq a$ has a \leq -least and a \leq -greatest element. If a is not S-finite, then we say that a is S-infinite.
- 5. A set a is *T*-finite if every nonempty $x \in \mathcal{P}(a)$ has a \subseteq -maximal element. If a is not T-finite, then we say that a is *T*-infinite.

Exercise 1. Let a be a set. Prove that the following are equivalent:

- 1. a is finite.
- 2. *a* is S-finite.
- 3. $\mathcal{P}(\mathcal{P}(a))$ is D-finite.
- 4. *a* is T-finite.

Exercise 2. If s is D-infinite, then there exists $p \subset s$ such that $|p| = |\omega|$.

- **Exercise 3.** If a is infinite, then $\mathcal{P}(\mathcal{P}(a))$ is D-infinite.
- **Exercise 4.** If a is T-finite, then for every partition of a into two sets at least one part is T-finite.
- **Exercise 5.** If a is T-finite, then $\mathcal{P}(a)$ is D-finite.