Exercise sheet \#4

Set Theory 2023

Definition 1.

1. A function $f: X \rightarrow Y$ is a subset of $X \times Y$ such that for all $x \in X$ there exists a unique $y \in Y$ such that $(x, y) \in f$. A function $f: X \rightarrow Y$ is

- injective if $\forall x, y \in X((x, a) \in f \wedge(y, a) \in f \rightarrow x=y$, and
- surjective if $\forall y \in Y \exists x \in X((x, y) \in f)$.

2. A binary relation \leq on a set X is a partial order on X if
(a) $\forall a \in X((a, a) \in \leq)$,
(b) $\forall a, b \in X(((a, b) \in \leq \wedge(b, a) \in \leq) \rightarrow a=b)$, and
(c) $\forall a, b, c \in X(((a, b) \in \leq \wedge(b, c) \in \leq) \rightarrow(a, c) \in \leq)$.

The notation $x \leq y$ means $(x, y) \in \leq$. The pair (X, \leq) is calles a partially-ordered set.
3. A partial order \leq is called a total order on X if $\forall a, b \in X((a, b) \in \leq \vee(b, a) \in \leq)$.
4. A total order on a set X is a well-ordering of X if $\forall S \subset X(S \neq \varnothing \rightarrow \exists m \in S \forall u \in S(m \leq u))$.
5. If $\left(P, \leq_{P}\right)$ and $\left(Q, \leq_{Q}\right)$ are partially ordered sets, then a function $f: P \rightarrow Q$ is order-preserving if $\forall p, p^{\prime} \in P\left(p \leq_{P} p^{\prime} \rightarrow f(p) \leq_{Q} f\left(p^{\prime}\right)\right)$. An injective order-preserving function is called an order embedding and a bijective order-preserving function is called an order isomorphism.

Exercise 1. Let $f: X \rightarrow Y$ be a function.

1. Prove that f is injective if and only if there exists $g: \mathcal{R}_{f} \rightarrow X$ such that for all $x \in X$ we have $(x, x) \in g \circ f(g$ is called a left inverse of $f)$.
2. Assume that for every set of pairwise disjoint nonempty sets $\left\{U_{i}: i \in I\right\}$ there exists a set V such that for all $i \in I,\left|V \cap U_{i}\right|=1$. Prove that, under this assumption, f is surjective if and only if there exists $g: \mathcal{R}_{f} \rightarrow X$ such that for all $y \in Y$ we have $(y, y) \in f \circ g(g$ is called a right inverse of $f)$.
3. Prove that f is injective and surjective (bijective) if and only if there exists $g: Y \rightarrow X$ which is a left and right inverse of f.

Exercise 2.

1. Show that if (P, \leq) is a partially ordered set, then (P, \geq) is also a partially ordered set, where $\geq=$ $\{(u, v) \in P \times P:(v, u) \in \leq\}$.
2. Suppose that (P, \leq) is a partially ordered set, and define $>=\{(u, v) \in P \times P:(v, u) \in \leq\} \backslash\{(u, u)$: $u \in P\}$. Show that $>$ is the complement of \leq in $P \times P$ if and only if \leq is a total order on P.
3. Show that \subseteq is a partial order on $\mathcal{P}(X)$ for any set X.

Exercise 3. Suppose that (A, \leq) is a partially ordered set. Show that there exists $S \subset \mathcal{P}(A)$ such that $(A, \leq \cap A \times A)$ is isomorphic to (S, \subseteq).

Exercise 4. If (P, \leq) is a well-ordered set and $f: P \rightarrow P$ is order-preserving, then $x \leq f(x)$ for all $x \in P$.
Exercise 5. Suppose that $\left(P, \leq_{P}\right)$ is a totally ordered set. An ordered set $\left(S, \leq_{S}\right)$ is an initial segment of $\left(P, \leq_{P}\right)$ if S is a proper subset of $P, \leq_{S}=\leq_{P} \cap(S \times S)$, and for all $p \in P$ and $s \in S$, if $p \leq_{P} s$ then $p \in S$.

Show that if (P, \leq) is a well-ordered set, then (P, \leq) is not isomorphic to any of its initial segments.

