Exercise sheet #4 Set Theory 2023

Definition 1.

- 1. A function $f: X \to Y$ is a subset of $X \times Y$ such that for all $x \in X$ there exists a unique $y \in Y$ such that $(x,y) \in f$. A function $f: X \to Y$ is
 - injective if $\forall x, y \in X((x, a) \in f \land (y, a) \in f \rightarrow x = y$, and
 - surjective if $\forall y \in Y \exists x \in X((x,y) \in f)$.
- 2. A binary relation \leq on a set X is a partial order on X if
 - (a) $\forall a \in X((a, a) \in \leq),$
 - (b) $\forall a, b \in X(((a, b) \in \leq \land (b, a) \in \leq) \rightarrow a = b)$, and
 - (c) $\forall a, b, c \in X(((a, b) \in \leq \land (b, c) \in \leq) \rightarrow (a, c) \in \leq).$

The notation $x \leq y$ means $(x, y) \in \leq$. The pair (X, \leq) is called a partially-ordered set.

- 3. A partial order \leq is called a *total order* on X if $\forall a, b \in X((a, b) \in \leq \lor (b, a) \in \leq)$.
- 4. A total order on a set X is a well-ordering of X if $\forall S \subset X (S \neq \emptyset \rightarrow \exists m \in S \forall u \in S (m \leq u))$.
- 5. If (P, \leq_P) and (Q, \leq_Q) are partially ordered sets, then a function $f: P \to Q$ is order-preserving if $\forall p, p' \in P(p \leq_P p' \to f(p) \leq_Q f(p'))$. An injective order-preserving function is called an order embedding and a bijective order-preserving function is called an order isomorphism.

Exercise 1. Let $f: X \to Y$ be a function.

- 1. Prove that f is injective if and only if there exists $g: \mathcal{R}_f \to X$ such that for all $x \in X$ we have $(x,x) \in g \circ f$ (g is called a *left inverse* of f).
- 2. Assume that for every set of pairwise disjoint nonempty sets $\{U_i : i \in I\}$ there exists a set V such that for all $i \in I$, $|V \cap U_i| = 1$. Prove that, under this assumption, f is surjective if and only if there exists $g \colon \mathcal{R}_f \to X$ such that for all $y \in Y$ we have $(y,y) \in f \circ g$ (g is called a *right inverse* of f).
- 3. Prove that f is injective and surjective (bijective) if and only if there exists $g: Y \to X$ which is a left and right inverse of f.

Exercise 2.

- 1. Show that if (P, \leq) is a partially ordered set, then (P, \geq) is also a partially ordered set, where $\geq = \{(u, v) \in P \times P : (v, u) \in \leq\}$.
- 2. Suppose that (P, \leq) is a partially ordered set, and define $>= \{(u, v) \in P \times P : (v, u) \in \leq\} \setminus \{(u, u) : u \in P\}$. Show that > is the complement of \leq in $P \times P$ if and only if \leq is a total order on P.
- 3. Show that \subseteq is a partial order on $\mathcal{P}(X)$ for any set X.

Exercise 3. Suppose that (A, \leq) is a partially ordered set. Show that there exists $S \subset \mathcal{P}(A)$ such that $(A, \leq \cap A \times A)$ is isomorphic to (S, \subseteq) .

Exercise 4. If (P, \leq) is a well-ordered set and $f: P \to P$ is order-preserving, then $x \leq f(x)$ for all $x \in P$.

Exercise 5. Suppose that (P, \leq_P) is a totally ordered set. An ordered set (S, \leq_S) is an *initial segment* of (P, \leq_P) if S is a proper subset of $P, \leq_S = \leq_P \cap (S \times S)$, and for all $p \in P$ and $s \in S$, if $p \leq_P s$ then $p \in S$. Show that if (P, \leq) is a well-ordered set, then (P, \leq) is not isomorphic to any of its initial segments.