Exercise sheet \#2

Set Theory 2023

This exercise sheet will be marked. Please hand in your solutions by Friday March 32023 at 4pm CET. You can send your solutions by email to aranda@kam.mff.cuni.cz, hand them in personally at the next exercise session (7 March 2022, 10:40 to 12:10 in S10), or leave them on my desk (S324, first desk on the right).

Exercise 1. Find sets a, b, c that satisfy each list of requirements.

1. (5 points) $a \subseteq b, a \in c, c \subseteq b, c \neq b$.
2. (5 points) $a \in b, b \in c, a \notin c$.
3. (5 points) $a \in b, b \subseteq c, a \nsubseteq c$.
4. (5 points) $a \cap b \subseteq c, a \nsubseteq c, b \nsubseteq c$.

In the exercises below, (a, b) denotes $\{\{a\},\{a, b\}\}$.
Exercise 2. (10 points) Suppose that a and b are sets. Prove that $a \times b:=\{(u, v): u \in a \wedge v \in b\}$ is a set.
Exercise 3. This exercise uses the notation from Exercise 2. Supposing that a, b, c, d are sets, prove or give a counterexample (5 points each):

1. $\varnothing \times a=a \times \varnothing=\varnothing$.
2. $a \times b=b \times a$.
3. $a \times b \subseteq c \times d$ if and only if $a \subseteq c$ an $b \subseteq d$.
4. $a \times(b \cap c)=(a \times b) \cap(a \times c)$.
5. $a \times(b \cup c)=(a \times b) \cup(a \times c)$.
6. $(a \times b) \cup(c \times d)=(a \cup c) \times(b \cup d)$.

Exercise 4. Given sets a, b, c, define (a, b, c) as $((a, b), c)$.

1. (5 points) Show that (a, b, c) is a set.
2. (5 points) Find an example where $(a, b, c) \neq(a,(b, c))$.
3. (5 points) Show that $(a, b, c)=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ if and only if $a=a^{\prime}, b=b^{\prime}, c=c^{\prime}$.

Exercise 5. A binary relation on a set X is a subset of $X \times X:=\{(x, y): x \in X \wedge y \in X\}$. Let R be a binary relation on X, and define

$$
\begin{aligned}
\mathcal{D}_{R} & :=\{x: \exists y((x, y) \in R)\} \\
\mathcal{R}_{R} & :=\{y: \exists x((x, y) \in R)\}
\end{aligned}
$$

1. (5 points) Prove that \mathcal{D}_{R} and \mathcal{R}_{R} are sets.
2. (10 points) Prove that the collection $\{(a, b): a, b$ are sets and $a \in b\}$ is not a set.
