Exercise sheet #1 Set Theory 2023

Exercise 1. Let | be a logical operator such that P|Q is false only when both P and Q are true. Show that $\neg P$, $P \land Q$, $P \lor Q$, and $P \Rightarrow Q$ are equivalent to statements using only P, Q, |.

Exercise 2. Compute the following truth tables:

- 1. $P \vee \neg P$
- 2. $\neg (P \land \neg P)$
- 3. $(P \Rightarrow \neg \neg P) \land (\neg \neg P \Rightarrow P)$
- 4. $(\neg P \lor Q) \land (\neg R \lor P)$
- 5. $P \Rightarrow (P \lor Q)$
- 6. $(P \lor Q) \Rightarrow P$
- 7. $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$

Exercise 3. If w is a term and w' is a proper initial segment of w then w' is not a term.

Exercise 4. Prove that $P(x) \subset x$ is false for all sets. Conclude that there is no "set of all sets".

Exercise 5. Show that if a is a set, then $\{x | x \notin a\}$ is not a set.

Exercise 6. If a is a set, then $\bigcap a$ denotes the collection of all sets x which belong to every element of a. Prove that $\bigcap a$ is a set for all nonempty a. What is wrong with $\bigcap \varnothing$?

Exercise 7. Prove or give a counterexample.

- 1. $a \subseteq b \cap c \Leftrightarrow a \subset b \land a \subset c$
- 2. $a = b \Leftrightarrow a\Delta b = \emptyset$
- 3. $a \subseteq b \cup c \Rightarrow a \subset b \lor a \subset c$
- 4. $a \cap b = a \setminus (a \setminus b)$
- 5. $a \setminus (b \setminus c) = (a \setminus b) \cup (a \setminus c)$
- 6. $a \setminus b = (a \cup b) \setminus b = a \setminus (a \cup b)$