Exercise sheet #8 Set Theory 2022 ## Definition 1. - 1. For any $\alpha, \varepsilon, \nu \in ORD$ with $\nu < \alpha, \alpha^{\varepsilon} \cdot \nu$ is a monomial in α . - 2. For any $n \in \omega$ and ordinals $\varepsilon_{n-1} > \varepsilon_{n-2} > \ldots > \varepsilon_0$ and $\nu_0, \ldots, \nu_{n-1} < \alpha$, $\sum_{i=n-1}^0 \alpha^{\varepsilon_i} \cdot \nu_i$ is a polynomial in α . If all the ν_i are greater than 0, then $\sum_{i=n-1}^0 \alpha^{\varepsilon_i} \cdot \nu_i$ is a proper polynomial in α . **Exercise 1.** Let n > 0 be a natural number and suppose that $p := \sum_{i=n-1}^{0} \alpha^{\varepsilon_i} \cdot \nu_i$ is a polynomial in α . Prove $\alpha^{\varepsilon_{n-1}+1} > p$. **Exercise 2.** Let n > 0 be a natural number and suppose that $p := \sum_{i=n-1}^{0} \alpha^{\varepsilon_i} \cdot \nu_i$ is a polynomial in α . Prove $\alpha^{\varepsilon_{n-1}} \cdot (\nu_{n-1} + 1) > p$. **Exercise 3.** Suppose that M is a set of monomials in α . Prove that $\sup M$ is a monomial in α . **Exercise 4.** For all $\alpha, \beta \in \text{ORD}$ with $\alpha \geq 2$, there exist $n \in \omega$, a decreasing sequence $\varepsilon_{n-1} > \ldots > \varepsilon_0$ and $\nu_0, \ldots, \nu_{n-1} < \alpha$ such that $\beta = \sum_{i=n-1}^0 \alpha^{\varepsilon_i} \cdot \nu_i$. Hint: Prove it by induction on β . Identify the largest monomial $m = \alpha^{\varepsilon} \cdot \nu \leq \beta$. If $m < \beta$, then there exists $\gamma \in ORD$ such that $m + \gamma = \beta$. **Exercise 5.** If $p = \sum_{i=n-1}^{0} \alpha^{\varepsilon_i} \cdot \nu_i$ and $q = \sum_{i=m-1}^{0} \alpha^{\xi_i} \cdot \mu_i$ are two proper polynomial representations of β , then m = n and for all i < m $\varepsilon_i = \xi_i$, $\nu_i = \mu_i$. **Definition 2.** An ordinal α is a gamma number if $\beta + \gamma < \alpha$ for all $\beta, \gamma < \alpha$. **Exercise 6.** Let α be an ordinal. The following are equivalent: - 1. α is a gamma number. - 2. $\beta + \alpha = \alpha$ for all $\beta < \alpha$. - 3. $\alpha = 0$ or there exists $\varepsilon \in ORD$ such that $\alpha = \omega^{\varepsilon}$.