Exercise sheet #7 Set Theory 2022

Definition 1. A binary relation $R \subseteq X \times X$ is

- 1. total if $\forall a \in X \exists b \in X(R(a,b))$ and
- 2. well-founded if $\forall S \subset X(S \neq \emptyset \Rightarrow \exists m \in S \forall s \in S(\neg R(s, m))$.

The following statement is known as the Axiom of Dependent Choice (DC): For every nonempty X and every total binary relation $R \subset X \times X$ there exists a sequence of elements of X $(x_n)_{n \in \omega}$ such that for all $n \in \omega$ $R(x_n, x_{n1})$.

Exercise 1. Use DC to prove that a binary relation $R \subseteq X \times X$ is well-founded if and only if there is no infinite sequence $(x_n)_{n \in \omega}$ such that $R(x_{n+1}, x_n)$ for all $n \in \omega$.

Exercise 2. In a well-founded partial order, every nonempty subset has a minimal element.

Exercise 3.

- 1. If (A, <) is a well-ordered set, then all its proper nonempty initial segments are of the form $I_a = \{x \in A : x < a\}$.
- 2. If (A, <) is a complete linear order, then its proper nonempty initial segments are of the form I_a (as above) or $I_a \cup \{a\}$.
- Exercise 4. Every element of an ordinal is an ordinal.
- **Exercise 5.** Let α be an ordinal. Then $c \in \alpha$ if and only if c is an initial segment of α .
- **Exercise 6.** For all $\alpha, \beta \in ORD$, $\beta \subset \alpha$ if and only if $\beta \in \alpha$.
- **Exercise 7.** Let α, β be ordinals and $\delta = \alpha \cap \beta$. Then $\delta = \alpha$ or $\delta = \beta$.
- Exercise 8. In view of the exercises above, is ORD a set?