Exercise sheet #5 Set Theory 2022

A set X is *Dedekind finite* if there is no bijection from X to any proper $Y \subset X$. If X is not Dedekind finite, then it is Dedekind infinite.

- Exercise 1. Prove that all finite sets are Dedikind finite. Is the converse true?
- **Exercise 2.** If X is a Dedekind finite set and $Y \subset X$, then Y is Dedekind finite.
- **Exercise 3.** Prove that X is Dedekind infinite if and only if there exists an injective $f: \omega \to X$.
- **Exercise 4.** Prove that if X and Y are finite, then so are $X \cup Y$ and $X \times Y$.
- **Exercise 5.** If $X \neq \emptyset$ and $|X| \leq |Y|$, then there exists a function $Y \to X$. Think about the converse.