Exercise sheet #2 Set Theory 2022

Exercise 1. Let a, b, c be sets. Prove that there exists a unique set d satisfying

$$\forall x (x \in d \leftrightarrow x = a \lor x = b \lor x = c).$$

Exercise 2. Consider the following weak versions of axioms seen in class:

Weak axiom of existence There exists a set.

Weak axiom of pair If a and b are sets, then there exists a set c satisfying $a \in c \land b \in c$.

Weak power set axiom If a is a set, then there exists a set p satisfying $\forall x (x \subset a \to x \in p)$.

Use each weak axiom above and the axiom schema of comprehension to prove the corresponding non-weakened axiom.

Exercise 3. Let $a = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$ and $b = \{\{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$.

- 1. How many elements do a and b contain?
- 2. Calculate $\bigcup a, \bigcap b$.

Exercise 4. Prove or give a counterexample.

- 1. $a \subseteq b \leftrightarrow a \cap b = a \leftrightarrow a \cup b = b \leftrightarrow a \setminus b = \emptyset$.
- 2. $a \setminus b = (a \cup b) \setminus b = a \setminus (a \cup b)$.
- 3. $a \cap b = a \setminus (a \setminus b)$.
- 4. $a\Delta(b \cup c) = (a\Delta b) \cup c$.
- 5. $a \setminus (b \setminus c) = (a \setminus b) \cup (a \cap c)$.

Exercise 5. Let s and a be sets and suppose $s \neq \emptyset$. Define

$$T_1 = \{ y \subseteq a : \exists x (x \in s \land y = a \cap x) \}$$
$$T_2 = \{ y \subseteq a : \exists x (x \in s \land y = a \setminus x) \}$$

Prove $a \cap \bigcup s = \bigcap T_1$ and $a \setminus \bigcap s = \bigcup T_2$.

Exercise 6. Prove that $\bigcap s$ is defined for all $s \neq \emptyset$. What is wrong with $\bigcap \emptyset$?