
Chapter 1

Preliminaries

1.1 First-order logic

1.1.1 Languages

A formal language is a set of symbols. There are three kinds of symbols: con-
stant symbols, function symbols, and relation symbols. The names of these
categories of symbols specify the intended use for the symbol: a constant sym-
bols are intended to represent fixed elements of a structure (the definition will
be given later), function symbols are intended to represent operations in a struc-
ture, and relation symbols are intended to represent relations.

Formally, we should also mention the logical symbols of the language, but
since these will always be the same, we will only specify the non-logical symbols
of languages. For the sake of completeness, I will mention here that all languages
in this text are assumed to include a symbol for true equality (=), the logical
symbols ¬ and ∧, brackets, a countably infinite supply of variable symbols, and
the quantifier ∃.

We will work in classical first-order logic. This means two things: first, the
rules of inference will be those of classical logic (modus ponens, elimination of
double negations, the usual stuff. See ASDF CITE), and that quantification can
be done only over individual variables, that is, variables intended to represent
members of a structure (as opposed to operations or relations). This is part of
a hierarchy of logics; for example, the propositional calculus (i.e., no quantifi-
cation) is sometimes called zeroth-order logic, and quantification over relations
and functions is allowed in second-order logic.

We use strings of symbols from the language (together with variables and
logical symbols) to express mathematical properties. To do this, we need to
agree on a set of meaningful expressions (formulas) and what it means for a
formula to be true in a structure, but first we need to know how many arguments
each relation and function symbol requires. Thus, relation and function symbols
have an associated arity which specifies precisely that. For example, the edge
relation in graphs requires the two endpoints of the edge, so it needs a binary

1

(arity 2) relation symbol to represent it.
Language is a choice. One could express all the axioms of group theory using

only a binary function symbol for the group operation and a constant for the
identity element, or including also a function symbol for the inverse operation.

1.1.2 Terms and formulas

In this subsection, we will define special sets of strings of symbols. One could
think of terms as the nouns of a natural language, and formulas as statements,
sometimes with free variables that we are free to interpret.

Definition 1. The terms of a language L are the elements of the least set of
strings of symbols that satisfies all of the following conditions:

1. Every variable is a term.

2. Every constant symbol from L is a term.

3. If f is an n-ary function symbol from L and t1, . . . , tn are terms, then
f(t1, . . . , tn) is a term.

So, in the language L = {+, ∗} ∪ {z : z ∈ Z}, where + and ∗ are binary
function symbols, the following are terms: 7, x2, ∗(6, 3), +(5, ∗(x1, x2)). The
latter two can be written as 6*3 and 5 + x1 ∗ x2. At this point, we have not
assigned any meaning to the symbols, so try to avoid interpreting them.

Definition 2. The atomic formulas of a language L are the elements of the
least set of strings of symbols that satisfy:

1. If s, t are terms of L, then s = t is an atomic formula.

2. If R is an n-ary relation symbol from L and t1, . . . , tn are terms of L, then
R(t1, . . . , tn) is an atomic formula.

As an example x1 ∈ ∅ and h(∅) = f(g(x1, x2, h(x3))) are atomic formulas
in the language {∈, f, g, h,∅}, where f and h are unary function symbols, g is
a ternary function symbol, ∈ is a binary relation symbol, and ∅ is a constant
symbol. I don’t want to push the analogy with natural languages too far, but you
can see that relation symbols (and here I include equality as a binary relation
symbol) act as verbs; the atomic formulas are similar to very simple sentences
such as “the ball is blue” etc.

The next level of complexity is formulas. This is where logical connectives
and quantifiers come into play.

Definition 3. The set of formulas over a language L (or L-formulas) is the
least set of strings that satisfy:

1. Every atomic formula over L is a formula.

2. If ϕ is a formula, then ¬ϕ is a formula.

2

3. If ϕ and ψ are L-formulas, then ϕ ∧ ψ is a formula.

4. If ϕ is a formula and x is a variable, then ∃xϕ is a formula.

As a special case, the set of atomic and negated atomic L-formulas is called
the set of literals of L.

Notice that each of the definitions above allows us to evaluate whether a
given string is a term or formula. The rules of construction also allow us to
perform proofs by induction on formulas: if we wish to prove that a statement
P holds for all formulas, we prove that it holds for atomic formulas (this is the
basis for induction) and then, assuming that P holds for ϕ and ψ, we prove that
P holds for ¬ϕ,ϕ ∧ ψ, and ∃xϕ.

Another important remark here is that, since we only allow finite arities,
formulas are always finite strings. There are also systems in which infinite strings
are allowed as formulas; those interested should look into infinitary logic.ASDF
CITE

1.1.3 Structures, homomorphisms, substructures

So far, formulas are simply well-formed strings of symbols, free of any meaning.
If we wish to use them to express properties of, say, the ring of integers or a
metric space, then we need a mechanism to interpret what they mean.

Definition 4. Let L be a language. An L-structure A is a set A (the domain
or universe of the structure) equipped with:

� Distinguished elements cA for each constant symbol c ∈ L.

� For each k, a k-ary relation RA ⊂ Ak for each k-ary relation symbol
R ∈ L.

� For each k, a k-ary function fA : Ak → A for each k-ary function symbol
f ∈ L.

For example, the ordered field of rational numbers is the {+,−, 0, 1, ∗, <}-
structure (Q; +,−, 0, 1, ∗, <), with the usual interpretations of the symbols, but
any other interpretation of the symbols is also an {+,−, 0, 1, ∗, <}-structure.

We can think of a structure as the base set and three (partial) functions
IC : L → A, IR : L →

⋃
{An : n ∈ N}, IF : L →

⋃
{AAn

: n ∈ N} that yield the
distinguished elements, relations and symbols in the structure. These are called
interpretation functions.

Interpreting formulas

Once we have an L-structure, the interpretation functions give us almost directly
a way to interpret terms and atomic formulas. In the formal definition, we will
use the word complexity to mean the number of symbols in a term. We write
t(x1, . . . , xn) for a term in which some of the variables x1, . . . , xn appear.

3

Definition 5. If t(x1, . . . , xn) is an L-term, A is an L-structure, and ā =
(a1, . . . , an) is a tuple of elements from A, we define tA[ā] as follows:

� If t is the variable xi, then tA[ā] is ai.

� If t is the constant c ∈ L, then tA[ā] is cA.

� If t is f(s1, . . . , sn) and each si is a term si(x1, . . . , xn), then tA[ā] is
fA(sA1 [ā], . . . , sAn [ā]).

The notation is a little heavy, but the meaning should be clear. Say we have
the Abelian group of integers as a structure Z = (Z; 0,+,−) for L = {e,+,−},
interpreting e as 0 and +,− in the usual way. Consider the terms t1(x1, x2, x3) =
x2, t2(x1, x2, x3) = +(+(x1, x3),−(x2))), t3(x1, x2, x3) = e. Then

� tZ1 [(5, 3, 7)] = 3.

� tZ1 [(53, 13, 274)] = 13.

� tZ2 [(5, 3, 7)] = +(+(5, 7),−(3)), or 5+7+(-3), which we can evaluate as 9
using the interpretations of + and –.

� tZ3 [(5, 3, 7)] = 0.

Now we can define what it means for a formula ϕ(x1, . . . , xn) to be true in
a structure A.

Definition 6. Let ϕ(x1, . . . , xn) be an L-formula, A an L-structure, and ā =
(a1, . . . , an) be a tuple of elements of A.

� If ϕ is the formula t1 = t2 where t1 and t2 are L-terms, then A |= ϕ(ā) if
tA1 (ā) = tA2 (ā).

� If ϕ is the formula R(s1, . . . , sn) where R is an n-ary relation symbol and
s1, . . . , sn are L-terms, then A |= ϕ(ā) if (tA1 [ā], . . . , tAn [ā]) ∈ RA.

� If ϕ is the formula ¬ψ, then A |= ϕ[ā] if A |= ψ[ā] does not hold.

� If ϕ is the formula ψ ∧ ξ, then A |= ϕ[ā] if A |= ψ[ā] and A |= ξ[ā].

� If ϕ is the formula ∃xψ(x, x1, . . . , xn), then A |= ϕ[ā] if there exists some
b such that A |= ψ[b, ā].

Each formula ϕ(x1, . . . , xn) defines a subset of An, namely {ā : A |= ϕ[ā]}.
These are known as definable sets. Definable functions are definable sets which
happen to be functions.

If we have chosen the language and interpretation wisely, then all the rela-
tions and operations that we care about will be either interpretations of symbols
from the language or definable from them. When studying a theory, we are also
interested in mappings between structures that preserve relations and opera-
tions (think for example of linear transformations: their defining characteristic
is that linear relations are preserved).

4

Definition 7. Let A,B be L-structures. A function h : A→ B is a homomor-
phism if

� for all relation symbols in L, if (a1, . . . , an) ∈ RA, then we have

(h(a1), . . . , h(an)) ∈ RB.

� for all function symbols in L we have

h(fA(a1, . . . , ak)) = fB(h(a1), . . . , h(ak)).

As an exercise, prove that a function h : A→ B is a homomorphism A→ B

if and only if all atomic formulas are preserved (meaning that A |= ϕ[ā] implies
B |= ϕ[h(ā)]).

There are some stronger notions of homomorphism that get special names.
A homomorphism is strong if it preserves the complements of relations; an em-
bedding is a strong injective homomorphism; and an isomorphism is a surjective
embedding. You can extend the exercise from the paragraph above to proving
that h is an embedding iff it preserves all literals. Can you think of analogue
statements for strong homomorphisms and isomorphisms?

Definition 8. An L-structure A is a substructure of B if:

� A ⊂ B,

� cA = cB for all constant symbols c ∈ L,

� RA = RB ∩An for each n-ary relation symbol R ∈ L, and

� fA = fB �An for each n-ary function symbol f ∈ L.

Here we should be careful about language. As mentioned before, all the ax-
ioms of group theory can be written in different languages, but the substructures
that we get from each language may not be subgroups. If we write the axioms
of group theory in the language L1 = {∗}, then any subset of the group which is
closed under multiplication will be a substructure; if we include a constant for
the identity, L2 = {∗, e}, then the substructures will be the submonoids of the
group; but if we include also a symbol for the inverse then we get subgroups as
substructures.

5

	Preliminaries
	First-order logic
	Languages
	Terms and formulas
	Structures, homomorphisms, substructures

