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Abstract

After Coleman’s work in [1], Fräıssé theorems are known for 12 of the 18
morphism-extension classes introduced by Lockett and Truss in [2]. We prove
Fräıssé theorems for IM and IB, two of the remaining classes.
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1. Introduction

A structure M is ultrahomogeneous if every isomorphism between finitely
generated substructures is restriction of an automorphism of M . Ultrahomo-
geneous structures have been heavily studied from several perspectives. They
are interesting to model theorists (they are ω-categorical, their theory elimi-
nates quantifiers, and the method by which they are constructed is amenable to
modifications that produce some exotic structures), to group theorists (because
of their large automorphism groups and their connection via Ramsey theory to
extreme amenability), to universal algebraists via the study of CSPs, and to
combinatorialists interested in Ramsey theory.

Complete graphs and unstructured sets are trivial examples of ultrahomoge-
neous structures; more interesting examples include the rational numbers as an
ordered set, the countable universal homogeneous Kn-free graphs and the uni-
versal homogeneous partial order (for more information and examples, see [3]).
The theory of an ultrahomogeneous structure has only one countable model, and
for this reason they are often assumed to be countable. Although the same is
not true for homomorphism-homogeneous structures (the example from Corol-
lary 2.2 in [4] is a non-ω-categorical HH-homogeneous graph), we will restrict
our attention to countable homomorphism-homogeneous structures to avoid set-
theoretic complications.

The classic Fräıssé theorem (see [5]) establishes a correspondence between
ultrahomogeneous structures and classes of finite structures that satisfy three
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fairly common properties and the amalgamation property (AP): if M is ultraho-
mogeneous, then its age (the class of finite structures that embed into M) has
the four properties mentioned before, and if C is a class with those properties,
then there exists a countable ultrahomogeneous MC such that Age(MC) = C.
Additionally, Fräıssé’s theorem says that any two (countable) ultrahomogeneous
structures with the same age are isomorphic.

In [4], Cameron and Nešetřil introduced the notion of homomorphism-homo-
geneity, a variation on ultrahomogeneity in which any homomorphism between
finite substructures of M is restriction of an endomorphism of M . In that same
paper, they isolated an amalgamation property for the subclass in which in-
jective homomorphisms between finite substructures are restrictions of injective
endomorphisms (MM in the notation introduced below) and proved an analogue
of Fräıssé’s theorem with it.

Some time later, Lockett and Truss [2] made finer distinctions between
homomorphism-homogeneous structures. They introduced new notions of homo-
morphism-homogeneity, bringing the total to 18. These notions are labelled by
two letters XY, where X ∈ {H,M, I} and Y ∈ {H,M,E,B, I,A}. A structure
is XY-homogeneous if every local homomorphism (that is, a homomorphism
with finite domain) of type X is restriction of an endomorphism of type Y. The
symbols X and Y are interpreted as follows:

– H: homomorphism/endomorphism

– M: monomorphism (injective)

– E: epimorphism (surjective)

– B: bimorphism (bijective)

– I: self-embedding

– A: automorphism

For example, the definition of homomorphism-homogeneity mentioned above
corresponds to HH-homogeneity in this language, and ultrahomogeneity corre-
sponds to IA-homogeneity.

For a while, homomorphism-homogeneity was a popular subject, and some
papers were written that attempted to develop the theory of homomorphism-
homogenous structures along the lines of the theory of ultrahomogeneous struc-
tures, with moderate success (see [6], [7], [8]). However, no analogue of Fräıssé’s
theorem was known for most of the classes defined by Lockett and Truss until
Coleman’s work in [1]. In that paper, Coleman isolated amalgamation proper-
ties and proved analogues of Fräıssé’s theorem for 12 of the 18 classes, in a more
or less uniform way.

The six remaining classes (IH, IE, IM, IB, MH, ME) are characterised by a
mismatch between the type of local homomorphism X and endomorphism Y. To
understand what we mean by this, consider any morphism-extension class not
listed in the parenthesis, say MB. Every restriction of a bijective endomorphism
(class B) to a finite substructure is a monomorphism (class M), and similar
statements hold for the 12 classes for which Fräıssé theorems are known. On
the other hand, the restrictions of Y-endomorphisms to finite subsets are not
necessarily X-morphisms for the six XY ∈ {IH, IE, IM, IB,MH,ME}.
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In the six mismatched classes, it is not immediately obvious what the amal-
gamation property should look like. It turns out that two almost trivial obser-
vations are the key to find the appropriate amalgamation property in IM: first,
if we extend a local isomorphism i to a global monomorphism I, then some of
the restrictions of I may not be isomorphisms; and second, if f is a monomor-
phism obtained as restriction of a global monomorphism in an IM-homogeneous
structure, then all local monomorphisms that ‘do the same as f ’ (we will call
these manifestations of a monomorphism in the age of M) are also restrictions
of global monomorphisms.

In this paper, we develop the idea in the preceding paragraph and prove
Fräıssé theorems for IB and IM. Most of the conceptual work goes into the
Fräıssé theorem for IM (section 3), and then we adapt the same argument for
IB (section 4).

2. Represented monomorphisms

The age of a relational structure M is the class of all finite relational struc-
tures that embed into M (warning: we will use an alternative definition in this
paper). A central piece in our understanding of ultrahomogeneous structures is
Fräıssé’s theorem, which we present below.

Theorem 1 (Fräıssé 1953). If M is an ultrahomogeneous structure, then
Age(M) satisfies the following properties:

1. Age(M) contains only countably many distinct structures up to isomor-
phism,

2. Age(M) is closed under isomorphism and (induced) substructures,

3. for all A,B ∈ Age(M) there exists C ∈ Age(M) and embeddings A →
C,B → C (Joint Embedding Property, or JEP), and

4. for all A,B1, B2 ∈ Age(M) and embeddings e : A→ B1, j : A→ B2 there
exists D ∈ Age(M) and embeddings e′ : B1 → D, j′ : B2 → D such that
e′ ◦ e = j′ ◦ j.

Conversely, if C is a class of finite structures that satisfies the four conditions
above, then there exists an ultrahomogeneous MC such that Age(MC) = C. Any
two ultrahomogeneous structures with the same age are isomorphic.

Analogues of this theorem were first proved for MM in [4] , and later for HH
in [6]. In [1], Coleman proved Fräıssé theorems for all the morphism-extension
classes introduced in [2] except IH, IE, IM, IB, MH, and ME. Our main contribu-
tions in this paper are Fräıssé theorems for IM (Theorem 21) and IB (Theorem
36).

We prefer to see the age of a relational structure as a category with countably
many objects, rather than as an unorganised proper class containing multiple
copies of the same structure. An effect of this is that the concept of substructure
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changes, (compare the second condition in Theorem 1 with the third condition
in Definition 2 below), but this is more something to keep in mind than a real
problem.

Our focus in this paper is on relational structures. Throughout, L will denote
a relational language with finitely many n-ary relations for each n.

Definition 2. A pre-Fräıssé class is a category (C,H) whose objects are finite
L-structures and whose arrows H are homomorphisms, which satisfies

1. H includes all embeddings,

2. |C| ≤ ℵ0 and C does not contain distinct but isomorphic structures,

3. C is hereditary: for all finite L-structures A and all B ∈ C, if there exists
an embedding e : A→ B, then there exists A′ ∈ C isomorphic to A, and

4. the Joint Embedding Property: for all A,B ∈ C, there exists C ∈ C and
embeddings A→ C,B → C.

When we speak of the age of M , we will usually mean the object set of a
pre-Fräıssé class whose objects are representatives of the isomorphism types of
finite structures that embed into M . If the arrows are relevant, we will mention
them.

Pre-Fräıssé classes are simply the ages of countable relational structures
(modulo isomorphism of finite substructures), equipped with some homomor-
phisms.

Given a set of finite structures C, Hom(C) denotes the family of all homo-
morphisms between elements of C, and similarly Mon(C) denotes all monomor-
phisms. We will use different types of arrows to distinguish different types of
homomorphism. In this paper, g : A ↪→ B means that g is an embedding.

An embedding e : A ↪→ B is an isomorphism between A and its image in B.
We will abuse notation and write e−1 for the left inverse of an embedding, even
when e is not surjective.

Definition 3. Let M,N be L-structures with Age(M) = Age(N) = C, A,B ∈ C,
and f : A → B a homomorphism. Given e : A ↪→ M and j : B ↪→ N , we use
f〈e, j〉 to denote j ◦ f ◦ e−1 : e[A]→ N .

When M = N , we call f〈e, j〉 a manifestation of f in M .

Of course, every local homomorphism of a structure M is manifestation of
a homomorphism in Mon(Age(M)).

Definition 4. Let M be an L-structure and M ⊆ End(M) a monoid of endo-
morphisms. The relation Rep(f; e, j)MM holds for a homomorphism f : A → B
and embeddings e : A ↪→ M , j : B ↪→ M if there exists F ∈ M such that
f〈e, j〉 = F

∣∣
e[A]

.

When F
∣∣
e[A]

= f〈e, j〉 as above, we will say that F represents f in M over

e and j.
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Remark 1. The condition F
∣∣
e[A]

= f〈e, j〉 is equivalent to F ◦ e = j ◦ f .

Definition 5. Let M be an L-structure and A ∈ Age(M). Two embeddings
e, e′ : A ↪→ M are domain-equivalent, in symbols e ∼ e′, if there exists σ ∈
Aut(A) such that e′ = e ◦ σ.

Domain-equivalent embeddings have the same image, and domain-equiva-
lence is intended to formalise the notion of considering a substructure of M as a
subset with the structure induced on it, rather than as the image of a particular
embedding.

There is a second equivalence relation that is relevant here. Suppose that
an endomorphism F represents a homomorphism f : A → B over e and j, and
we have embeddings e′ ∼ e, j′ ∼ j, so that j = j′ ◦ τ and e′ = e ◦ σ for some
automorphisms σ, τ . Then the same F represents τ ◦ f ◦ σ−1. This motivates
the following definition.

Definition 6. Let M be an L-structure and A,B ∈ Age(M). Two homo-
morphisms h, h′ : A → B are equivalent, in symbols h ≈ h′, if there exists
σ ∈ Aut(A) and τ ∈ Aut(B) such that h′ = τ ◦ h ◦ σ.

Just as domain-equivalence was about substructures, equivalence is intended
to capture the effect of a homomorphism f : A→ B, in the sense that two equiv-
alent homomorphisms will produce isomorphic substructures that are embedded
in B in the same way (i.e., their images are translates of one another under the
natural action of the automorphism group of B).

Proposition 7. Let M be an L-structure, A,B ∈ Age(M), M a monoid of
endomorphisms of M , and f : A → B a homomorphism. Suppose g ≈ f and
there exist e : A ↪→ M, j : B ↪→ M such that Rep(f; e, j)MM; then there exist e′ ∼
e, j′ ∼ j such that Rep(g; e′, j′)MM.

Proof. Suppose g ≈ f , say, g = τ ◦ f ◦ σ. Take embeddings e′, j′ with e′ = e ◦ σ
and j = j′ ◦ τ . Now

F ◦ e′ = F ◦ e ◦ σ = j ◦ f ◦ σ = j′ ◦ τ ◦ f ◦ σ = j′ ◦ g.

Proposition 7 tells us that the statement Rep(f; e, j)MM is really about the
≈-class of f and the ∼-classes of e and j. Although we will not say it explicitly
in our statements or introduce notation for this fact, the reader should keep it
in mind.

In the following theorem, IM means that every local isomorphism is restric-
tion of some element of M.

Theorem 8. Let M be an IM-homogeneous L-structure, where M ⊆ End(M)
is a monoid. If Rep(f; e, e′)MM holds for some e : A ↪→M, e′ : B →M , then every
manifestation of f in M is restriction of an element of M.
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Proof. Let F be a function in M satisfying F ◦ e = e′ ◦ f .
Take local isomorphisms i : im(j) → im(e) and i′ : im(e′) → im(j′). By IM-

homogeneity, i and i′ are restrictions of endomorphisms I, J ∈ M respectively.
Then J ◦ F ◦ I ∈M represents f over j, j′.

The preceding theorem allows us to simply write ‘f is represented in M,’
without mentioning the embeddings, when M is IM-homogeneous.

Corollary 9. Let M be an IM-homogeneous structure, where M is a monoid
of endomorphisms of M , and f : A → B a homomorphism in Age(M). If
Rep(f; e, e′)MM holds, and f ≈ g , then Rep(g; j, j′)MM holds for all j : A → M,
j′ : B →M .

Proof. Follows directly from Proposition 7 and Theorem 8.

We will write Rep(f)MM to mean ‘there exist e, e′ such that Rep(f; e, e′)MM.’

Definition 10. Let g : A→ C be a homomorphism. We say that g is associated
with f : A→ B if f is a surjective homomorphism and there exists an embedding
B ↪→ C such that the following diagram commutes:

A C

A B

g

1A

f

For example, embeddings are associated with automorphisms and monomor-
phisms are associated with surjective monomorphisms. We can say that two
monomorphisms g and h are effect-equivalent if there exists a surjective f such
that both g and h are associated with f .

Now, a simple observation: we can restrict our attention to surjective homo-
morphisms under any notion of homogeneity.

Proposition 11. Let M be an IM-homogeneous structure for some monoid
M ⊆ End(M). For all homomorphisms g : A→ C, Rep(g)MM holds iff Rep(f)MM,
where f is a surjective representative of the effect-equivalence class of g.

Proof. Direct consequence of Theorem 8.

Proposition 11 will be applied freely without reference throughout the text.

3. Extensible monomorphisms and IM-homogeneity

In this section we isolate the monomorphisms over which a restricted version
of the mono-amalgamation property from [4] holds in IM-homogeneous struc-
tures, and prove an analogue of Fräıssé’s theorem for IM.

Notation 1. Let C be the object set of a pre-Fräıssé class and A ∈ C.

1. C(n) is the set of structures in C with n elements,
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2. C(≤n) is the set of structures in C with at most n elements,

3. CA is the set of structures B ∈ C for which there exist embeddings A ↪→ B.

We can mix these symbols; for example, C(≤n)A is the set of elements of C that
contain isomorphic copies of A and have at most n elements.

Definition 12. Let (C,Mon(C)) be a pre-Fräıssé class, A,B ∈ C, and f : A→ B
a surjective monomorphism. We will say that f is

1. extensible over e : A ↪→ A′ if there exists B′ ∈ C(|A
′|)

B , j : B ↪→ B′, and a
surjective monomorphism g : A′ → B′ such that j ◦ f = g ◦ e. In this case,
g is called an (|A′| − |A|)-extension of f .

2. 1-extensible in C if it is extensible over all e : A ↪→ A+, for all A+ ∈
C(|A|+1)
A .

3. n + 1-extensible in C if f is n-extensible and every n-extension of f is
1-extensible.

4. C-extensible if f is n+ 1-extensible for all n ∈ ω.

If g is a non-surjective monomorphism, we will say that g is 1-extensible (or
n-extensible, or age-extensible) if it is associated with a surjective 1-extensible
(or n-extensible, or age-extensible) monomorphism.

The idea behind this definition is to simulate in Age(M) the steps that one
would naturally take to prove that a local monomorphism f can be extended
to an injective endomorphism in a countable structure M , namely choosing any
vertex outside the domain of f and finding a suitable image for it outside the
image of f .

Proposition 13. Let M be an IM-homogeneous structure and suppose j : A ↪→
B is an embedding between elements of Age(M). If e : A ↪→M is an embedding,
then there exists a monomorphism m : B →M such that m ◦ j = e.

Proof. Let h : B → M be an embedding, and A′ = h ◦ j[A]. Take any local
isomorphism i : A′ → e[A] and apply IM-homogeneity: there exists an injective
endomorphism I of M that extends i. Now m := I ◦ h satisfies the conclusions
of the statement.

We will later give a more detailed version Proposition 13, (Theorem 15)
which characterises IM-homogeneity.

The proofs from this point on involve a great deal of selecting embeddings
with the appropriate image and naming isomorphism types corresponding to
finite substructures of some structure. To abbreviate these steps, we introduce
a couple of symbols.

Notation 2.
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1. If M is an L-structure and X is a finite induced substructure of M , then
isotp(X) denotes the unique object of Age(M) isomorphic to X.

2. If C ∈ Age(M) andX ⊂M is isomorphic to C, then EC
X is a representative

of the ∼-class of an embedding C ↪→M with image X.

The actual identity of EC
X is not relevant, but only its ∼-class, so the defi-

nition above is good enough for our purposes.

Theorem 14. Let M be a countable IM-homogeneous L-structure. A monomor-
phism f : A → B from Mon(Age(M)) is Age(M)-extensible if and only if

Rep(f)
Mon(M)
M .

Proof. Suppose first that Rep(f)
Mon(M)
M holds, so there exist embeddings e, j

such that f〈e, j〉 is restriction of a monomorphism M → M . It follows from
IM-homogeneity (Theorem 8) that all manifestations of f are extensible.

Let fn : An → Bn be an n-extension of f (we allow n = 0). We will prove
that g is n+ 1-extensible.

Given anyA+ ∈ Age(M)
(|An|+1)
An

and an embedding s : A ↪→ A+, let i : A+ ↪→
M and j : Bn ↪→M be embeddings. By Theorem 8, the manifestation fn〈i◦s, j〉
is restriction of some injective endomorphism F : M →M .

Let B+ be isotp(F ◦ i[A+]) and t : Bn → B+ any embedding with EB+

F◦i[A+] ◦
t = j. The sets i[A+] \ i ◦ s[An] and F ◦ i[A+] \ j[Bn] contain one vertex
each, say u and v respectively. The choices we have made ensure that fn[i, j] ∪
{(u, v)} is a local surjective monomorphism, or equivalently, manifestation of
some fn+1 : A+ → B+ via the embeddings i and F ◦ i. This proves that f is
n+ 1-extensible, and by induction Age(M)-extensible.

For the converse, suppose that f is Age(M)-extensible, and let f〈e, j〉 be
a manifestation of f . Given any a /∈ e[A], let A+ be isotp(e[A] ∪ {a}) and

s : A → A+ an embedding satisfying EA+

e[A]∪{a} ◦ s = e. By 1-extensibility of f ,

there exists B+, an embedding t : B → B+ and a monomorphism f+ : A+ → B+

with t◦f = f+◦s. By Proposition 13, there exists a monomorphism k : B+ →M
with k ◦ t = j. All the injectivity conditions imply that k[B] \ j[B] contains
exactly one element, say b. Tracing the arrows, one can see that f〈e, j〉∪{(a, b)}
is a monomorphism. Since M is countable, we can run this argument over an
enumeration to obtain an injective endomorphism that extends f〈e, j〉.

Next comes a strengthening of Proposition 13, the IM-analogue of the embed-
ding-extension property of ultrahomogeneous structures.

Theorem 15. A countable structure M is IM-homogeneous if and only if for
all A,B ∈ Age(M) and all embeddings s : A ↪→ B, i : A ↪→ M there exists C ∈
Age(M), an (Age(M),Mon(Age(M)))-extensible f : B → C, and k : C ↪→ M
such that k ◦ f ◦ j = e.

Proof. The “only if” part is essentially Proposition 13 (in the proof, we can
take C to be the isomorphism type of m[B] with an appropriate embedding;
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m is Age(M)-extensible by Theorem 14, since it is restriction of an injective
endomorphism).

Now let σ be an automorphism of A ∈ Age(M), and consider the local
isomorphism σ〈i, j〉.

Given any a /∈ i[A], let A′ be isotp(A ∪ {a}). We can apply the hypothesis
to an embedding s : A→ A′ that satisfies EA′

i[A]∪{a} ◦s = i and j to find c /∈ j[A]

such that f1 := σ〈i, j〉 ∪ {(a, c)} is a monomorphism.
The induction step is slightly more complicated. Suppose that we have

succeeded in finding a local monomorphism fn〈in, jn〉 extending σ〈i, j〉 such
that fn : An → Bn is Age(M)-extensible. Consider b /∈ in[An], and let An+1 be

isotp(An ∪ {b}) with an embedding un : An → An+1 that satisfies E
An+1

in[An]∪{b} ◦
un = in.

We know that fn : An → Bn is Age(M)-extensible, so there exist K ∈
Age(M)

(|Bn|+1)
Bn

, w : Bn ↪→ K, and an Age(M)-extensible g : An+1 → K such
that g ◦un = w ◦ fn. Now we can apply the hypothesis to find B ∈ Age(M), an
Age(M)-extensible monomorphism m : K → B, and an embedding r : B → M
such that r ◦ m ◦ w = jn; take Bn+1 as isotp(r[B]) and fn+1 to be

(m ◦ fn)〈EAn+1

in[An]∪{b}, r〉.
If we argue as above over an enumeration of M , then we find a monomor-

phism M →M extending σ〈i, j〉 after ω steps.

We will use wavy arrows to represent C-extensible monomorphisms, to un-
derscore their special status.

Lemma 16. Let M be an IM-homogeneous structure. Then the following amal-
gamation property holds in Age(M):

(IMAP) for all A,B1, B2 ∈ Age(M), if f : A → B1 is Age(M)-
extensible and g : A ↪→ B2 is an embedding, then there exist
C ∈ Age(M), an embedding f ′ : B1 ↪→ C, and an Age(M)-
extensible g′ : B2 → C such that f ′ ◦ f = g′ ◦ g.

B1

A C

B2

f ′f

g g′

Proof. Given f, g, A,B1, B2 as in the statement, take e : B2 ↪→M and j : B1 ↪→
M , and consider f〈e◦g, j〉. Since f is Age(M)-extensible, we know by Theorem

14 that Rep(f; e◦g, j)
Mon(M)
M holds, so there exists an injective endomorphism F

that extends f〈e ◦ g, j〉. Let C be isotp(F ◦ e[B2]∪ j[B1]), and k an embedding
in the ∼-class of EC

F◦e[B2]∪j[B1]
.

Now f ′ := k−1 ◦ j, g′ := k−1 ◦ F ◦ e, and C witness the conclusions of the
lemma.

Proposition 17. In any pre-Fräıssé class (C,Mon(C)), if f and g are C-extensible
monomorphisms and dom(g) = codom(f), then g ◦ f is C-extensible.
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Proof. We may assume that f and g are surjective.

Suppose f : A → B and g : B → C. Given A+ ∈ C(|A|+1)
A and e : A ↪→ A+,

1-extensibility of f yields j : B ↪→ B+ and f+ : A+ → B+. Now we can apply 1-
extensibility of g with respect to j to obtain g+ and an embedding k : C ↪→ C+.
Since f+ and g+ are composable monomorphisms, the monomorphism g+ ◦ f+,
together with k and C+, witnesses 1-extensibility.

This argument can be repeated to prove inductively that g ◦ f is n + 1-
extensible for all n ∈ ω.

A quintuple (A,B1, B2, f, e) where A,B1, B2 are elements of a pre-Fräıssé
class C, f : A → B1 is age-extensible in (C,Mon(C)), and e : A ↪→ B2 is an IM-
amalgamation problem. A structure C ∈ C for which there exist j : B1 ↪→ C and
age-extensible g : B2 → C is a solution to (A,B1, B2, f, e).

Proposition 18. Let (C,Mon(C)) be the age of an IM-homogeneous structure,
and suppose that f : A → P is C-extensible and e : A ↪→ B is an embedding. If
i : P → Q is an embedding, then a solution to the problem (A,Q,B, i ◦ f, e) is a
solution to (A,P,B, f, e).

Proof. Suppose that S is a solutioin to (A,Q,B, i ◦ f, e), witnessed by u and g,
so that u ◦ (i ◦ f) = g ◦ e. Then S is a solution to (A,P,B, f, e), as witnessed
by u ◦ i and g.

Thus, we can ‘transfer’ an amalgamation problem over P to one over Q
in order to enrich a given finite structure with images under age-extensible
monomorphisms of some structure.

Lemma 19. Let (C,Mon(C)) be a pre-Fräıssé class. If all embeddings are C-
extensible and the IMAP holds, then there exists a countable IM-homogeneous
structure MC with Age(MC) = C.

Proof. Enumerate C as {Ci : i ∈ ω}. Let M0 = C0; each time we select an Mi,
we produce an enumeration of all IM-amalgamation problems of the form

Mi

A

B

f

e

as tuples, that is {(Ai,j , Bi,j , fi,j , ei,j) : j ∈ ω}. For bookkeeping purposes, we
will also need a bijective function ϕ : {2n : n ∈ N} → {(i, j) : i, j ∈ ω} such that
if (i, j) = f(m), then i ≤ m.

Suppose that we have produced Mk, and embeddings si : Mi−1 ↪→ Mi for
1 ≤ i ≤ k.

1. If k = 2n, then consider ϕ(k). This is a pair (m,n) corresponding to
some amalgamation problem that we have already enumerated. If m = k,
then we take any solution of the amalgamation problem as Mk+1 and
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sk : Mk ↪→ Mk+1 as the embedding given by the IMAP; and if m < k,
then we solve the problem

Mk

Am,n

B

sk◦sk−1◦...◦
sm◦fm,n

em,n

By Proposition 18, a solution to this problem is also a solution to the origi-
nal one, and moreover, we enrich the current Mk. Let sk+1 the embedding
Mk →Mk+1 given by the IMAP.

2. If k = 2n+ 1, then let Mk+1 be a structure obtained by applying the JEP
to Mk and Cn+1, which also yields an embedding sk+1 : Mk →Mk+1.

Now, to construct the countable structure, let ξ0 be any bijective function
M0 → |M0|; if we have enumerated Mk by ξk, then let ξk+1 to be any bijec-
tion Mk+1 → |Mk+1| extending the function ξ′k+1 : sk+1[Mk] → |Mk| given by
ξ′k+1(sk+1(v)) = ξk(v). This guarantees ξk+1 ◦ sk+1 = ξk.

Given any tuple of natural numbers (a1, . . . , aar(R)), there exists k such that
|Mk| ≥ max{a1, . . . , aar(R)}. We declare

RM (a1, . . . , aar(R))⇔ RMk(ξ−1k (a1), . . . , ξ−1k (aar(R))).

Now we claim that Age(M) = C and M is IM-homogeneous.
Age(M) ⊆ C is clear because any subset of M embeds in Mk for sufficiently

large k, and Mk is an element of the hereditary class C. The odd steps of the
construction ensure that every element of C embeds into some Mk, and therefore
into M .

To prove IM-homogeneity, we will show that the condition from Theorem
15 is satisfied by M . Let e : A → B and i : A → M be embeddings. By
construction, there is a natural number k such that i is an embedding A ↪→Mk.
At some point we solved a problem whose solution is also a solution of

Mk

A

B

i

e

(embeddings are C-extensible by hypothesis), which ensures the existence of an
C-extensible monomorphism B → Mk+1 ⊂ M , and so M is IM-homogeneous.
This concludes our proof.

Definition 20. Two structures M0,M1 are EM-equivalent (from Extensible
and Monomorphism) if Age(M0) = Age(M1) and for all Age(M0)-extensible
f : A → B and all embeddings ei : A → Mi, e1−i : B → M1−i, the function
f〈ei, e1−i〉 is restriction of a monomorphism Mi →M1−i.
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Our next result is the analogue of Fräıssé’s theorem for IM-homogeneous
structures. We use Ext(C) to denote the set of all C-extensible monomorphisms.

Theorem 21 (IM Fräıssé). Let M be an IM-homogeneous structure. Then
all embeddings are Age(M)-extensible, (Age(M),Ext(Age(M))) is a pre-Fräıssé
class with the IMAP and local monomorphism is represented in Mon(M) iff it
is a manifestation of an Age(M)-extensible monomorphism.

Conversely, if (C,Ext(C)) is a pre-Fräıssé class with the IMAP in which
all embeddings are C-extensible, then there exists a countable IM-homogeneous
structure MC such that Age(MC) = C and in which a local monomorphism is
M -extensible iff it is a manifestation of a C-extensible monomorphism.

Finally, any two countable IM-homogeneous structures with the same age
are EM-equivalent.

Proof. Theorem 14 and Lemma 16 prove the first statement; its converse is
Lemma 19.

We need a bit of scaffolding for the proof of uniqueness of the limits up to
EM-equivalence. Take u ∈ {0, 1} and two IM-homogeneous structuresMu,M1−u
with the same age C. Let f0 : A0 → B0 be any C-extensible monomorphism in
Mon(C) and e0 : A0 →Mu, j0 : B0 →M1−u two embeddings with images X0, Y0
respectively, so that h0 := f0〈e0, j0〉 is a surjective monomorphism X0 → Y0.

Enumerate Mu \ X0 as {xi : i ∈ ω}, and let Ai be isotp(Xi), where Xi :=
X ∪ {xj : j < i}. Write ei for EAi

Xi
and take embeddings vi : Ai → Ai+1 such

that id
∣∣
Xi
◦ ei = ei+1 ◦ vi.

For each i ∈ ω, we will find finite subsets Yi+1 ⊃ Yn contained in M1−u, Bi ∈
C, and all the functions necessary to make the following diagram commutative
for any finite k:

A0 A1 A2 . . . Ak

X0 X1 X2 . . . Xk

B0 B1 B2 . . . Bk

Y0 Y1 Y2 . . . Yk

v0

e0

f0

e1

f1

v1

e2

f2

v2 vk−1

ek

fk

id id id id

j0

w0

j1

w1

j2

w2 wk−1

j2

id id id id

The unmarked arrows Xi → Yi are fi〈ei, ji〉.
Once Yi+1 has been selected (this will be explained below), take Bi+1 as

isotp(Yi+1) and embeddings wi : Bi ↪→ Bi+1, ji+1 : Bi+1 ↪→ Yn+1 such that
ji+1 ◦ wi = ji; the C-extensible fi+1 : Ai+1 → Bi+ 1 will come from C-extensi-
bility of fi. Since Mu is countable, H :=

⋃
{fi〈ei, ji〉 : i ∈ ω} is a monomorphism

Mu →M1−u.
Suppose fk, Yk, Bk, jk, wk have been defined for k ≤ t. We will now describe

how to extend the sequences to t+ 1.
Consider At+1. Let s : At+1 → M1−u be any embedding. Let g be the

manifestation of ft over the embeddings s ◦ vt and ft, so that g ◦ s ◦ vt = jt ◦ ft.

12



We know that M1−u is IM-homogeneous and ft is C-extensible, so g restriction
of an injective endomorphism F : M1−u →M1−u.

Define Yt+1 as Yt∪{F (v)}, where v is the unique element of s[At+1]\s◦vt[At],
and let Bt+1 be isotp(Yt+1). The embeddings jt+1 and wt can now be chosen
so that jt+1 ◦ wt = jt, and we can take ft+1 to be the monomorphism of which
F
∣∣
s[At+1]

is a manifestation over the embeddings s and jt+1. Applying the

equivalence between being restriction of an injective endomorphism of M1−u
and C-extensibility, we see that ft+1 is C-extensible.

Continuing in this manner ω steps, we find a monomorphism Mu → M1−u
as described before.

4. IB-homogeneity

IB-homogeneity is a special case of IM-homogeneity in which the extensions
of local isomorphisms are guaranteed to be bijective.

Conceptually, there is no great difference between this section and the pre-
ceding one, and we will sometimes refer the reader to the corresponding result
in section 3 when a proof is a simple modification of the IM case.

Definition 22. Let L = {Ri : i ∈ I} be a relational language. If C = (C, Si)i∈I
is an L-structure, then its complement is the structure

C = (C,Car(Ri) \ Si)i∈I .

In other words, a tuple (c1, . . . car(Rk)) satisfies Rk in C exactly when C |=
¬Rk(c1, . . . car(Rk)). We will usually not distinguish between a structure and
its domain.

Definition 23. Let A,B be relational structures in the language L. An anti-
monomorphism is an injective function f : a→ B such that

A |= ¬R(a1, . . . , aar(R))⇒ B |= ¬R(f(a1), . . . , f(aar(R))),

for all R ∈ L.

Antimonomorphisms will be used to find preimages for elements outside the
image of a local monomorphism. The following two results are straightforward
generalisations of results from [9].

Observation 24. Let A,B be relational structures. A function f : A→ B is a
bijective homomorphism iff f−1 is a bijective homomorphism B → A.

Proof. Suppose that f is a bijective homomorphism. If R(b1, . . . , bar(R)) holds

in B, then ¬R(b1, . . . , bar(R)) in B. Since f is bijective and preserves the re-
lations from L, but may map a tuple that does not satisfy R to a tuple that
does, the preimage of a tuple that does not satisfy R is always a tuple that
does not satisfy R, so ¬R(f−1(b1), . . . , f−1(bar(R))) holds in A, or, equivalently,

R(f−1(b1), . . . , f−1(bar(R))) in A.

13



In the case of injective but not surjective homomorphisms, the proof of
Observation 24 says that the left inverse of a monomorphism is a partial injective
homomorphism between the complement structures. Using (f−1)−1 = f and

A = A, the four conditions below are equivalent.

Corollary 25. Let A,B be relational structures and suppose that f : A→ B is
a function. The following are equivalent:

1. f is a bijective homomorphism A→ B,

2. f−1 is a bijective homomorphism B → A,

3. f is a bijective antihomomorphism A→ B, and

4. f−1 is a bijective antihomomorphism B → A.

Bijective endomorphism of a structure M are called bimorphisms; Bi(M) is
the bimorphism monoid of M .

Corollary 26. Let M be an L structure. For all monomorphisms f ∈ Mon(Age(M)),

Rep(f)
Bi(M)
M iff Rep(f−1)

Bi(M)

M
.

Proof. Follows from Corollary 25.

Proposition 27. If M is an IB-homogeneous L-structure, then M is also IB-
homogeneous.

Proof. Suppose M is an IB-homogeneous L-structure. By definition, M is also
an L-structure.

Let i : A → B be a local isomorphism in M . Since isomorphisms preserve
relations and their negations, i−1 : B → A is a local isomorphism of M . By
IB-homogeneity, there exists a bimorphism J : M →M that extends i−1. Now
by Corollary 25, J−1 : M →M is a bimophism of M , and since J extends i−1,
it follows that J−1 extends i.

Now we will proceed by analogy with the IM case. The first step is to identify
those monomorphisms in the age whose manifestations will be restrictions of
bimorphisms in an IB-limit.

Notation 3. If (C,Mon(C)) is a pre-Fräıssé class, then C is {A : A ∈ C}.

Because we only allow total functions as arrows in a pre-Fräıssé class, the
left inverse of a monomorphism is not necessarily an arrow in (C,Mon(C)), but
there is a function that is just as good for our purposes.

Definition 28. Let (C,Mon(C)) be a pre-Fräıssé class and f : A → B an ele-
ment of Mon(C). Then f− denotes a surjective antimonomorphism C → A for
which an embedding C → B exists so that the following diagram commutes.

14



A B B

A C

f

idA

f−

One can verify that the inverse of a surjective representative of the effect-
equivalence class of f satisfies the conditions from Definition 28.

Definition 29. Let (C,Mon) be a pre-Fräıssé class, A,B ∈ C, and f : A → B
a surjective monomorphism. We will say that f is

1. 1-biextensible if f is 1-extensible in (C,Mon(C)) and f−1 is 1-extensible
in (C,Mon(C)).

2. n+1-biextensible if every n-extension of f in (C,Mon(C)) is 1-biextensible
and every n-extension of f−1 in (C,Mon(C)) is 1-biextensible.

3. C-biextensible if f is n+ 1-biextensible for all n ∈ ω.

If f is not surjective, we will say that f is 1-biextensible if it is associated with
a 1-biextensible surjective monomorphism. We also define n + 1-biextensibility
and C-biextensibility for non-surjective monomorphisms in this manner.

As a particular case of Theorem 8, we get that if any manifestation of a
monomorphism f in an IB-homogeneous M is restriction of a bimorphism of
M , then all manifestations of f in M are restrictions of a bimorphism of M .

In diagrams, antimonomorphisms will be represented by dashed arrows.

Theorem 30. Let M be an IB-homogeneous structure and suppose j : A→ B is
an embedding between elements of Age(M). If e : A→M is an embedding, then
there exist C,D ∈ Age(M), a surjective monomorphism m : B → C, a surjective
antimonomorphism n : B → D, and embeddings k : C ↪→ M , t : D ↪→ M such
that k ◦m ◦ j = e = t ◦ n ◦ j.

B

D A C

M

n m

t

j

e
k

Moreover, m, n can be chosen so that Rep(m)
Bi(M)
M and Rep(n)

Bi(M)

M
hold.

Proof. We can proceed as in the proof of Theorem 15. Let i : B ↪→ M be any
embedding, and s : i ◦ j[A] → e[A] an isomorphism. By IB-homogeneity, there
exists a bimorphism S : M →M such that S

∣∣
i◦j[A]

= s.

Let C be isotp(S ◦ i[B]). Then m = (EC
S◦i[B])

−1 ◦S ◦ i : B → C is a surjective

monomorphism, and m〈i, EC
S◦i[B]〉 = S

∣∣
i◦j[A]

, so Rep(m)
Bi(M)
M holds.
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Since s is an isomorphism, s−1 is also an isomorphism, so it is restriction
of a bimorphism T : M → M . Let D be isotp(T−1 ◦ i[B]). Now i−1 ◦ T ◦
ED

T−1◦i[B] is a surjective monomorphism D → B, so by Proposition 27, (i−1 ◦
T ◦ED

T−1◦i[B])
−1 is a local surjective antimonomorphism, or, equivalently, man-

ifestation of the inverse of a surjective monomorphism, say (n〈i, ED
T−1◦i[B]〉)

−1.

Again by Proposition 27, n〈i, ED
T−1◦i[B]〉 is restriction of a bimorphism of M ,

and we get Rep(n)
Bi(M)

M
.

We will now show that if M is IB-homogeneous, then the local monomor-
phisms that are represented in Bi(M) are exactly the manifestations of Age(M)-
biextensible monomorphisms.

Theorem 31. Let M be a countable IB-homogeneous L-structure. A surjec-
tive monomorphism f0 : A → B in Mon(Age(M)) is Age(M)-biextensible iff

Rep(f0)
Bi(M)
M .

Proof. Suppose that f0 is Age(M)-biextensible, and let f0〈e0, j0〉 be any mani-
festation of f0.

Enumerate M \ e[A] = {xi : i ∈ ω} and M \ j[B] = {yi : i ∈ ω}, and let
Xi := e[A] ∪ {xk : k < i} Yi := e[A] ∪ {yk : k < i}.

Suppose that fr〈er, jr〉 = g : S → Ym is a surjective monomorphism extend-
ing f0〈e0, j0〉. Consider xn, where n is the least value such that xn is not in
S. Let P be isotp(S ∪ {xn}), and m : isotp(S) → P an embedding such that

EP
S∪{xn}◦m = er. Apply Age(M)-extensibility to find C ∈ Age(M)

(|isotp(Ym)|+1)
isotp(Ym) ,

an embedding k : isotp(Ym)→ C, and an Age(M)-biextensible h : P → C. Now
take any embedding ` : C ↪→ M , and any isomorphism n : ` ◦ k[isotp(Yn)] →
jr[isotp(Yr)]. By IB-homogeneity, n is restriction of a bimorphism N .

Now we can take B = isotp(N ◦k[C]) and fr+1 as a monomorphism such that
fr+1〈EP

S∪{xn}, N ◦ k〉 = g ∪ {(a0, F (c))}. This is a monomorphism extending g.

To ensure surjectivity for the extension, suppose that fi〈ei, ji〉 = h : Xt → Z
is an extension of f0〈e0, j0〉. Consider yn, where n is the least value such that
yn /∈ Z. Observe h−1 is a surjective local monomorphism in M by Proposition
24, so we can argue as in the preceding paragraph to find a vertex z such
that h−1 ∪ {(yn, z)} is a local monomorphism of M . By Proposition 24 again,
g ∪ {(z, yn)} is a monomorphism that extends fi〈ei, ji〉.

Alternating the arguments of the two preceding paragraphs, we produce a
bimorphism F =

⋃
{fi〈ei, ji〉 : i ∈ ω}.

For the converse, suppose that all manifestations of f0 : A → B are repre-
sented in Bi(M), as are all n-extensions of f0 up to n = k (we get 0 for free). We
will prove that f0 is k + 1-Age(M)-biextensible and the result will then follow
by induction.

Let g : Ak → Bk be any k-extension of f . Let Ak+1 be any element of

Age(M)
(|Ak|+1)
Ak

, j : Ak ↪→ Ak+1, and e : Ak+1 ↪→ M any embedding. Consider
any embedding i : Bk → M . By hypothesis, every manifestation of g is M -
extensible, so in particular g〈e◦j, i〉 is M -extensible, and we can take Bk+1 to be
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the isomorphism type of the image of e[Ak+1] under a bimorphism that extends
g〈e◦j, i〉 to prove that g is k+1-extensible in (Age(M),Mon(Age(M))). Viewing
the inverse of g〈e ◦ j, i〉 as a local monomorphism in M , and applying the same
reasoning, we get that g−1 is k+ 1-biextensible in (Age(M),Mon(Age(M)).

Our next goal is to describe the amalgamation property for IB-homogeneous
structures.

Lemma 32. Let M be an IB-homogeneous structure. Then the following amal-
gamation property holds in Age(M):

(IBAP) for all A,B1, B2 ∈ Age(M) and all f : A → B1, g : A → B2,
where f is Age(M)-biextensible and g is an embedding, there ex-
ists C ∈ Age(M), an embedding f ′ : Bi → C, and an Age(M)-
biextensible g′ : B2 → C such that f ′ ◦ f = g′ ◦ g.

Proof. Take A,B1, B2, f, g as in the statement, and let e1 : B1 → M, e2 : B2 →
M be embeddings. Now f [e2◦g, e1◦f ] is manifestation of an Age(M)-biextensible
monomorphism, so there exists a bimorphism F : M → M with F

∣∣
e2◦g[A]

=

f [e2 ◦ g, e1 ◦ f ].
Let C be the element of Age(M) isomorphic to F ◦ e2[B2]∪ e1[B1], and let d

be an embedding C →M with image F ◦e2[B2]∪e1[B1]. Now take f ′ : B1 → C
as an embedding with d ◦ f ′ = e1, and let g′ be a monomorphism satisfying
g′[e2, d] = F

∣∣
e[B2]

.

Then F
∣∣
e[B2]

is manifestation of g′, and since F is a bimorphism extend-

ing Fe[B2], it follows from Theorem 31 that g′ is Age(M)-biextensible. This
completes the proof.

Remark 2. In [1], all classes with XY where Y represents a surjective class
of endomorphisms have two amalgamation properties. The same is true here,
although it is not completely obvious: the IBAP can be broken into an amal-
gamation property for age-extensible monomorphisms whose inverses are asso-
ciated with age-extensible monomorphisms in the age of complements, and an
amalgamation property for age-extensible antimonomorphisms whose inverses
are associated with age-extensible monomorphisms.

The IB-analogue of the embedding-extension property of ultrahomogeneous
structures is our next result.

Theorem 33. A countable structure M is IB-homogeneous if and only if for
all A,B ∈ Age(M) and all embeddings j : A ↪→ B, e : A ↪→ M there exists
C ∈ Age(M), a surjective Age(M)-biextensible f : B → C and an embedding
k : C ↪→M such that k ◦ f ◦ j = e.

Proof. Suppose first that M is IB-homogeneous. Let i : B ↪→ M be an embed-
ding, and s : i◦j[A]→ e[A] an isomorphism. By IB-homogeneity, s is restriction
of a bimorphism S : M → M . Let C be the isomorphism type of S ◦ i[B], and
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f a monomorphism such that S
∣∣
i[B]

is manifestation of f . Then f is Age(M)-

biextensible by Theorem 31.
Now suppose that the condition from the statement holds, let m : A→ A be

an automorphism, and e, j : A ↪→M embeddings. Follow the argument from the
first part of the proof of Theorem 31 to extend the local isomorphism m〈e, j〉
to a bimorphism of M .

Lemma 34. Let (C,Mon(C)) be a pre-Fräıssé class. If all embeddings are
C-biextensible and IBAP holds, then there exists a countable IB-homogeneous
structure MC with Age(MC) = C.

Proof. Suppose that M is produced by the construction from the proof of
Lemma 19, but using IBAP instead of IMAP. The proof of Age(MC) = C is
the same as in Lemma 19.

We claim that M is IB-homogeneous. We will prove that the condition from
Theorem 33 holds in M . Suppose then that e : A ↪→ B and i : A ↪→ M are
embeddings. By construction, there is a natural number k such that i is an
embedding A ↪→ Mk, and at some point we solved an amalgamation problem
whose solution is also a solution of

Mk

A

B

i

e

so there exists a C-biextensible f : B →Mk+1, and M is IB-homogeneous.

Definition 35. Two L-structures M0, M1 are BB-equivalent (from Biexten-
sible and Bimorphism) if they have the same age C and for all C-biextensible
f : A → B and embeddings e : A → Mi, j : B → M1−i, the function f〈e, j〉 is
restriction of a bijective homomorphism Mi →M1−i (i ∈ {0, 1}).

Theorem 36 (IB Fräıssé). Let M be an IB-homogeneous structure. Then
(Age(M),Ext(Age(M))) is a pre-Fräıssé class with the IBAP, and for all f ∈
Mon(Age(M)) we have Rep(f)

Bi(M)
M if and only if f is Age(M)-biextensible (in

particular, all embeddings are Age(M)-biextensible).
Conversely, if (C,Ext(C)) is a pre-Fräıssé class with the IBAP in which

all embeddings are C-biextensible, then there exists a countable IB-homogeneous
structure MC such that Age(MC) = C.

Finally, any two countable IB-homogeneous structures with the same age are
BB-equivalent.

Proof. The first two statements have already been proven.
We will only sketch the proof of the last one, as the argument is very similar

to that from Theorem 21.
Suppose that M0, M1 are IB-homogeneous structures with the same age

C, and f0 : A0 → B0 is a C-biextensible monomorphism. Take u ∈ {0, 1} and
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embeddings e0 : A0 ↪→ Mu, j0 : B0 ↪→ M1−u. We will show how to extend
g0 := f0〈e0, j0〉 to a bijective homomorphism Mu →M1−u.

Enumerate Mu \ e[A] = {xi : i ∈ ω}, M1−u = {yi : i ∈ ω}, and let
Xi = e[A] ∪ {xk : k < i}, Yi = j[B] ∪ {yk : k < i}.

Suppose that gk = fk〈ek, jk〉 is a bijective monomorphism between Xr and
some Z ⊂ M1−u. Take the first element of M1−u not in Z, say ys, and note
that g−1k is a monomorphism Z → Xr, which moreover is manifestation of the C-
biextensible f−1k . Let C be the isomorphism type of Z∪{ys}, and m : C ↪→Mu.
Then we can manifest f−1k over m ◦ jk[Bk] and ek[Ak] to find a vertex xt such
that g−1k ∪ {(ys, xt)} is a partial monomorphism M1−u → Mu. By Proposition
27, gk+1 := (g−1k ∪{(ys, xt)})−1 is a monomorphism that includes ys in its image,
and by Theorem 31, gk+1 is C-biextensible.

And if gk = fk〈ek, jk〉 is a bijective monomorphism whose image Yr, then
consider the vertex xn with minimal n such that xn is not in the domain of gk.
Let Ai+1 be the isomorphism type of e[A] ∪ {xn}, and let ` : Ai+1 ↪→ M1−u be
an embedding. Now fk〈`, jk〉 is M1−u-biextensible, and we can use an extension
to find an image for xn.

Continuing in this manner, we find that f0〈e0, j0〉 is restriction of a bijective
homomorphism of Mu →M1−u.

5. Final comments and questions

The method to find amalgamation properties and prove Fräıssé theorems for
XY-homogeneous structures that we used is fairly simple:

1. Determine the smallest class of local homomorphism X ∈ {H,M, I} that
contains all restrictions of Y-endomorphisms,

2. define a suitable notion of age-extensibility,

3. verify that XY-homogeneous structures satisfy an amalgamation property
with respect to the age-extensible homomorphisms,

4. verify that extensibility of embeddings to age-extensible homomorphisms
characterises XY-homogeneous structures (that is, find analogues of the-
orems 15 and 33),

5. carry out the Fräıssé construction,

6. verify that limits are unique up to the relation that holds when two struc-
tures M,N have the same age and for every every age-extensible f and
embeddings i : dom(f) → M, j : codom(f) → N , the homomorphism
f〈i, j〉 is restriction of a Y-morphism M → N .

Of these steps, only #2 seems to be a problem for IH, IE, MH, and ME,
because the inverse relation of a homomorphism is not only not necessarily a
homomorphism (between complement structures), but often not even a function.
A possible way to work around this issue is to define age-extensibility in terms
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of all the right inverses of the homomorphism, so that a homomorphism is
extensible if each of the injective functions that can be obtained as a right
inverse of it is an extensible monomorphism in the sense of the present paper
(the requirement of the extension being injective would be dropped).

Although the idea above makes sense, I have not worked out the details yet,
so the question arises:

Question 37. Are the methods in this paper flexible enough to prove Fräıssé
theorems for IH, IE, MH, and ME?

As mentioned in the introduction, ultrahomogeneity is associated with quan-
tifier elimination. The question of partial quantifier elimination (where the elim-
ination set is not the set of quantifier-free formulas) was explored in [10], but,
to my knowledge, not completely settled. In particular,

Question 38. Given a morphism-extension class XY, what is the elimination
set of its first-order theory?
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[1] T. D. Coleman, Two Fräıssé-style theorems for homomorphism–
homogeneous relational structures, Discrete Mathematics 343 (2) (2020)
111674.

[2] D. C. Lockett, J. K. Truss, Some more notions of homomorphism-
homogeneity, Discrete Mathematics 336 (2014) 69–79.

[3] D. Macpherson, A survey of homogeneous structures, Discrete mathematics
311 (15) (2011) 1599–1634.
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