Clumsy Packings with Polyominoes

Maria Axenovich Torsten Ueckerdt* Stefan Walzer

Department of Mathematics, Karlsruhe Institute of Technology

maria.aksenovich@kit.edu torsten.ueckerdt@kit.edu stefan.walzer@student.kit.edu
packed packings

(many applications, papers, results . . .)
clumsy packings
(very little known,
This talk . . .)

packed packings
(many applications,
papers, results . . .)
I. Introduction
- Definitions & Examples

II. Results
- Extremal Questions
- Aperiodic Clumsy Packings
- Undecidability
Example & Definitions

palette \mathcal{D}
Example & Definitions

packing P = maximal set of disjoint copies from \mathcal{D}
Example & Definitions

- **packing** $P = \text{maximal set of disjoint copies from } \mathcal{D}$

- **density** $(P) = \lim_{n \to \infty} \frac{\text{area covered by } P \text{ in } n\text{-ball}}{\text{area of } n\text{-ball}}$

- **clumsiness** $(\mathcal{D}) = \text{minimum density of a packing}$
Example & Definitions

- **Example & Definitions**

- **packing** $P = \text{maximal set of disjoint copies from } \mathcal{D}$

- $$\text{density}(P) = \lim_{n \to \infty} \frac{\text{area covered by } P \text{ in } n\text{-ball}}{\text{area of } n\text{-ball}}$$

- **clumsiness**(\mathcal{D}) = *minimum* density of a packing
Example & Definitions

- **packing** $P = \text{maximal set of disjoint copies from } \mathcal{D}$

- **density** $(P) = \lim_{n \to \infty} \frac{\text{area covered by } P \text{ in } n\text{-ball}}{\text{area of } n\text{-ball}}$

- **clumsiness** $(\mathcal{D}) = \text{minimum density of a packing}$

Thm. (Gyárfás, Lehel, Tuza 1988)

$\text{clumsiness}(\begin{array}{c}
\square \\
\square
\end{array}) = 2/3$.
More Examples

\[
\text{clumsiness}(\underbrace{\phantom{\text{\text{\text{\text{\text{}}}\\}}}^{k}}) = \frac{k}{2k-1} \approx \frac{1}{2}
\]
$$\text{clumsiness}\left(\begin{array}{c} k \\
\end{array}\right) = \frac{k}{2^k - 1} \approx \frac{1}{2}$$
More Examples

\[
\text{clumsiness}(k) = \frac{k}{2k-1} \approx \frac{1}{2}
\]

\[
\text{clumsiness}(\overbrace{\begin{array}{c}
\vdots
\end{array}}^{k},\quad) = 1
\]

\[
\leq \frac{2k}{k(k-1)+1} \approx \frac{2}{k}
\]
Clumsy Packings with Polyominoes

I. Introduction
 - Definitions & Examples

II. Results
 - Extremal Questions
 - Aperiodic Clumsy Packings
 - Undecidability
The Clumsiest Polyomino

What is the smallest clumsiness if \(D \) is a single polyomino of size \(k \)?

\[
\text{clumsiness}(\underbrace{\quad}_{k}) = \frac{k}{2k-1} \approx \frac{1}{2}
\]
The Clumsiest Polyomino

What is the smallest clumsiness if \mathcal{D} is a single polyomino of size k?

clumsiness($\overset{k}{\rule{2cm}{0.5pt}}$) = $\frac{k}{2k-1} \approx 1/2$

clumsiness($\overset{k}{\rule{2cm}{0.5pt}}$) = $k^2 - \left\lfloor \frac{(k-1)}{2} \right\rfloor^2 - \left\lceil \frac{(k-1)}{2} \right\rceil^2 \approx \frac{2}{k}$
What is the smallest clumsiness if D is a single polyomino of size k?

$$\text{clumsiness}(\begin{array}{|c|c|}
\hline
\vline & \vline \\
\vline & \vline \\
\hline
\end{array}) = \frac{k}{k^2 - k + 1} \approx \frac{1}{k}$$

$$\text{clumsiness}(\begin{array}{|c|c|c|}
\hline
\vline & \vline & \vline \\
\vline & \vline & \vline \\
\hline
\end{array}) = \frac{k}{k^2 - \left\lfloor \frac{k-1}{2} \right\rfloor^2 - \left\lceil \frac{k-1}{2} \right\rceil^2} \approx \frac{2}{k}$$
The Clumsiest Polyomino

Theorem. Let D be a single polyomino of size k. Then

- $\text{clumsiness}(D) \geq k/(k^2 - k + 1)$.
- $\text{clumsiness}(D) \geq k/(k^2 - \lceil (k - 1)/2 \rceil^2 - \lfloor (k - 1)/2 \rfloor^2)$, if D is connected.

Both bounds are best possible.
The Clumsiest Polyomino

Theorem. Let D be a single polyomino of size k. Then

- $\text{clumsiness}(D) \geq k / (k^2 - k + 1)$. \(\approx 1/k\)
- $\text{clumsiness}(D) \geq k / (k^2 - \lceil (k - 1)/2 \rceil^2 - \lceil (k - 1)/2 \rceil^2)$, if D is connected. \(\approx 2/k\)

Both bounds are best possible.
The Clumsiest Polyomino

Theorem. Let D be a single polyomino of size k. Then

- $\text{clumsiness}(D) \geq \frac{k}{(k^2 - k + 1)} \approx \frac{1}{k}$
- $\text{clumsiness}(D) \geq \frac{k}{(k^2 - \lfloor (k - 1)/2 \rfloor^2 - \lceil (k - 1)/2 \rceil^2)},$ if D is connected.

Both bounds are best possible.

Lemma. Let D be a single polyomino of size k. Then

- D intersects $\leq k^2 - k + 1$ copies of itself. $\approx \frac{k^2}{2}$
- D intersects $\leq k^2 - \lfloor (k - 1)/2 \rfloor^2 - \lceil (k - 1)/2 \rceil^2$ copies, if D is connected. $\approx k^2$

Both bounds are best possible.
Proof of Lemma

Lemma. A polyomino of size k intersects at most $k^2 - k + 1$ copies of itself (including itself).

fix D
Proof of Lemma

Lemma. A polyomino of size k intersects at most $k^2 - k + 1$ copies of itself (including itself).

D' intersects D
Lemma. A polyomino of size k intersects at most $k^2 - k + 1$ copies of itself (including itself).
Proof of Lemma

Lemma. A polyomino of size k intersects at most $k^2 - k + 1$ copies of itself (including itself).

D' intersects D if and only if cell c_i of D coincides with cell c_j of D', where $c_i = (x_i, y_i)$ and $c_j = (x_j, y_j)$. The difference $c_i - c_j$ is a difference in D.

![Diagram of intersecting polyominos](image)
Examples of intersections of polyominoes with themselves.
Proof of Lemma (general case)

Lemma. In a polyomino of size k there are at most $k^2 - k + 1$ distinct differences.

- There are k^2 differences $c_i - c_j$.
- The k differences $c_i - c_i$ are the same.

Thm. (Singer 1938) For every prime power n there is a set S_n of $n + 1$ numbers in $\mathbb{Z}_{n^2 + n + 1}$ such that every non-zero difference modulo $n^2 + n + 1$ occurs exactly once in S_n.

E.g. $S_2 = \{1, 2, 4\}$ and $S_3 = \{1, 2, 4, 8, 13\}$
Proof of Lemma (general case)

Lemma. In a polyomino of size k there are at most $k^2 - k + 1$ distinct differences.

- There are k^2 differences $c_i - c_j$.
- The k differences $c_i - c_i$ are the same.

Thm. (Singer 1938) For every prime power n there is a set S_n of $n + 1$ numbers in \mathbb{Z}_{n^2+n+1} such that every non-zero difference modulo $n^2 + n + 1$ occurs exactly once in S_n.

E.g. $S_2 = \{1, 2, 4\}$ and $S_3 = \{1, 2, 4, 8, 13\}$
Proof of Lemma (general case)

Lemma. In a polyomino of size k there are at most $k^2 - k + 1$ distinct differences.

- There are k^2 differences $c_i - c_j$.
- The k differences $c_i - c_i$ are the same.

Thm. (Singer 1938) For every prime power n there is a set S_n of $n + 1$ numbers in \mathbb{Z}_{n^2+n+1} such that every non-zero difference modulo $n^2 + n + 1$ occurs exactly once in S_n.

E.g. $S_2 = \{1, 2, 4\}$ and $S_3 = \{1, 2, 4, 8, 13\}$
Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most $k^2 - \lfloor (k - 1)/2 \rfloor^2 - \lceil (k - 1)/2 \rceil^2$ distinct differences.

Fix a tree T.
Lemma. A connected polyomino of size k has at most $k^2 - \lfloor (k - 1)/2 \rfloor^2 - \lceil (k - 1)/2 \rceil^2$ distinct differences.

\triangleright Fix a tree T.

\triangleright Fix a difference d.
Proof of Lemma (connected case)

Lemma. A connected polyomino of size \(k \) has at most \(k^2 - \left\lfloor (k - 1)/2 \right\rfloor^2 - \left\lceil (k - 1)/2 \right\rceil^2 \) distinct differences.

- Fix a tree \(T \).
- Fix a difference \(d \).
- Move \(d \) along \(T \) if possible on both ends.
- Record all starting points.
Lemma. A connected polyomino of size k has at most $k^2 - \left\lfloor (k - 1)/2 \right\rfloor^2 - \left\lceil (k - 1)/2 \right\rceil^2$ distinct differences.

▷ Fix a tree T.
▷ Fix a difference d.
▷ Move d along T if possible on both ends.
▷ Record all starting points.
Lemma. A connected polyomino of size k has at most
\[k^2 - \left\lfloor \frac{(k-1)}{2} \right\rfloor^2 - \left\lceil \frac{(k-1)}{2} \right\rceil^2 \] distinct differences.

▷ Fix a tree T.
▷ Fix a difference d.
▷ Move d along T if possible on both ends.
▷ Record all starting points.
Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most $k^2 - \lceil (k - 1)/2 \rceil^2 - \lfloor (k - 1)/2 \rfloor^2$ distinct differences.

▷ Fix a tree T.
▷ Fix a difference d.
▷ Move d along T if possible on both ends.
▷ Record all starting points.
Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most $k^2 - \lfloor (k - 1)/2 \rfloor^2 - \lceil (k - 1)/2 \rceil^2$ distinct differences.

- Fix a tree T.
- Fix a difference d.
- Move d along T if possible on both ends.
- Record all starting points.
Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most

$$k^2 - \left\lfloor \frac{(k - 1)}{2} \right\rfloor^2 - \left\lceil \frac{(k - 1)}{2} \right\rceil^2$$

distinct differences.

- Fix a tree T.
- Fix a difference d.
- Move d along T if possible on both ends.
- Record all starting points.
Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most $k^2 - \left\lfloor (k - 1)/2 \right\rfloor^2 - \left\lceil (k - 1)/2 \right\rceil^2$ distinct differences.

▷ Fix a tree T.
▷ Fix a difference d.
▷ Move d along T if possible on both ends.
▷ Record all starting points.
Lemma. A connected polyomino of size k has at most
\[k^2 - \left\lfloor \frac{(k-1)}{2} \right\rfloor^2 - \left\lceil \frac{(k-1)}{2} \right\rceil^2 \] distinct differences.

▷ Fix a tree T.
▷ Fix a difference d.
▷ Move d along T if possible on both ends.
▷ Record all starting points.
Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most $k^2 - \lceil (k - 1)/2 \rceil^2 - \lfloor (k - 1)/2 \rfloor^2$ distinct differences.

▷ Fix a tree T.
▷ Fix a difference d.
▷ Move d along T if possible on both ends.
▷ Record all starting points.
Lemma. A connected polyomino of size k has at most $k^2 - \left\lfloor (k - 1)/2 \right\rfloor^2 - \left\lceil (k - 1)/2 \right\rceil^2$ distinct differences.

- Fix a tree T.
- Fix a difference d.
- Move d along T if possible on both ends.
- Record all starting points.

$\# \text{ differences} \leq k^2 - \#(\bullet \bullet)^2 - \#(\bullet \bullet \bullet \bullet)$
The Clumsiest Set of Polyominoes

The clumsiest polyomino of size k has clumsiness

$$\frac{k^2 - \lfloor (k-1)/2 \rfloor^2 - \lceil (k-1)/2 \rceil^2}{k} \leq \frac{2k}{k(k-1)+1} \approx \frac{2}{k}.$$

Open Question: What is the clumsiest set of polyominoes each of size at most k?
Clumsy Packings with Polyominoes

I. Introduction
- Definitions & Examples

II. Results
- Extremal Questions
- Aperiodic Clumsy Packings
- Undecidability
Almost-Clumsy Periodic Packings

- Does there always exist a periodic clumsy packing?
Almost-Clumsy Periodic Packings

- Does there always exist a periodic clumsy packing?

Theorem. For every palette \mathcal{D} and every $\varepsilon > 0$ there exists a **periodic** packing P s.t. $\text{density}(P) \leq \text{clumsiness}(\mathcal{D}) + \varepsilon$.
Almost-Clumsy Periodic Packings

- Does there always exist a periodic clumsy packing?

Theorem. For every palette \mathcal{D} and every $\varepsilon > 0$ there exists a periodic packing P s.t. density$(P) \leq \text{clumsiness}(\mathcal{D}) + \varepsilon$.

clumsy packing
Almost-Clumsy Periodic Packings

- Does there always exist a periodic clumsy packing?

Theorem. For every palette \mathcal{D} and every $\varepsilon > 0$ there exists a periodic packing P s.t. $\text{density}(P) \leq \text{clumsiness}(\mathcal{D}) + \varepsilon$.

(sparse square)

clumsy packing
Almost-Clumsy Periodic Packings

Does there always exist a periodic clumsy packing?

Theorem. For every palette \(\mathcal{D} \) and every \(\varepsilon > 0 \) there exists a periodic packing \(P \) s.t. \(\text{density}(P) \leq \text{clumsiness}(\mathcal{D}) + \varepsilon \).
Almost-Clumsy Periodic Packings

Does there always exist a periodic clumsy packing?

Theorem. For every palette \mathcal{D} and every $\varepsilon > 0$ there exists a periodic packing P s.t. $\text{density}(P) \leq \text{clumsiness}(\mathcal{D}) + \varepsilon$.

Clausal packing

ε-clumsy periodic packing
Aperiodic Clumsy Packings

- Does there always exist a periodic clumsy packing?
Aperiodic Clumsy Packings

Does there always exist a periodic clumsy packing?

NO!
Aperiodic Clumsy Packings

- Does there always exist a periodic clumsy packing?

Theorem. There exists a palette \mathcal{D}, $|\mathcal{D}| = 14$ such that every clumsy packing is aperiodic.
Aperiodic Clumsy Packings

- Does there always exist a periodic clumsy packing? **NO!**

Theorem. There exists a palette \mathcal{D}, $|\mathcal{D}| = 14$ such that every clumsy packing is aperiodic.

Wang Tiles

![Wang Tiles Image]
Wang Tiles

Wang Tiling
Thm. (Culik 1996) There exists a set of 13 Wang tiles such that every Wang tiling is aperiodic.

Thm. (Berger 1966) It is undecidable whether a given set of Wang tiles tiles the plane.
From Wang Tiles to Polyominoes
From Wang Tiles to Polyominoes

\[2x + 5 \]
From Wang Tiles to Polyominoes

- Palette = Wang-polyominoes + bad x-by-x square
From Wang Tiles to Polyominoes

- Palette = Wang-polyominoes + bad x-by-x square

- Wang tiling exists
 \[\text{density}(P) = \frac{20x-29}{(2x+5)^2}. \]

- Wang tiling does not exist
 \[\Rightarrow \text{"many" bad squares} \]
 \[\Rightarrow \text{density}(P) > \frac{20x-29}{(2x+5)^2}. \]
Wang Tiles

- **Thm.** (Culik 1996) There exists a set of 13 Wang tiles such that every Wang tiling is aperiodic.

- **Thm.** (Berger 1966) It is undecidable whether a given set of Wang tiles tiles the plane.

Polyominoes

- **Theorem.** There exists a set of 14 polyominoes such that every clumsy packing is aperiodic.

- **Theorem.** For some $q \in \mathbb{Q}$ it is undecidable whether a given set of polyominoes has clumsiness at most q.
Thank you for your attention!

Clumsy Packings with Polyominoes

Maria Axenovich Torsten Ueckerdt* Stefan Walzer

maria.aksenovich@kit.edu torsten.ueckerdt@kit.edu stefan.walzer@student.kit.edu

Department of Mathematics, Karlsruhe Institute of Technology
Summary and Open Problems

Thm. The clumsiest connected polyomino of size k has clumsiness $\approx \frac{2}{k}$.

Open: What is the clumsiest set of polyominoes each of size k?

Open: What if we allow rotations?

Thm. For every $\varepsilon > 0$ there exist a periodic packing P such that density$(P) \leq$ clumsiness $+\varepsilon$.

Thm. Sometimes all clumsy packings are aperiodic.

Thm. Computing clumsiness is undecidable for some $q \in \mathbb{Q}$.

Open: What if we allow rotations?