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Planarity on the critical window
for random graphs



The model G(n,M)

There are 2(n2) labelled graphs with n vertices.

A random graph G(n,M) is the probability space with
properties:

I Sample space: set of labelled graphs with n vertices and
M = M(n) edges.

I Probability: Uniform probability (
((n2)
M

)−1
)

Properties:

♡ Fixed number of edges X
♣ The probability that a fixed edge belongs to the random

graph is p =
(
n
2

)−1
M . X

♠ There is not independence.



The Erdős-Rényi phase transition

Random graphs in G(n,M) present a dichotomy for M = n
2 :

1.− (Subcritical) M = cn, c < 1
2 : a.a.s. all connected

components have size O(log n), and are either trees or
unicyclic graphs.

2.− (Critical) M = n
2 + λn2/3: a.a.s. the largest connected

component has size of order n2/3

3.− (Supercritical) M = cn, c > 1
2 : a.a.s. there is a unique

component of size of order n.

Double jump in the creation of the giant component.



The problem; what was known

PROBLEM: Compute

p(λ) = lim
n→∞

Pr
{
G
(
n, n2 (1 + λn−1/3)

)
is planar

}
What was known:

I Janson,  Luczak, Knuth, Pittel (94): 0.9870 < p(0) < 0.9997

I  Luczak, Pittel, Wierman (93): 0 < p(λ) < 1

Our contribution: the whole description of p(λ)



Our result. The strategy



The main theorem
Theorem (Noy, Ravelomanana, R.) Let gr be the number of
cubic planar weighted multigraphs with 2r vertices. Write

A(y, λ) =
e−λ3/6

3(y+1)/3

∑
k≥0

(
1
232/3λ

)k
k! Γ

(
(y + 1− 2k)/3

) .
Then the limiting probability that the random graph
G
(
n, n2 (1 + λn−1/3)

)
is planar is

p(λ) =
∑
r≥0

√
2π

(2r)!
grA

(
3r +

1

2
, λ

)
.

In particular, the limiting probability that G
(
n, n2

)
is planar is

p(0) =
∑
r≥0

√
2

3

(
4

3

)r

gr
r!

(2r)!2
≈ 0.99780.
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The resulting multigraph is the core of the initial graph
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The strategy (and II): shape in the critical window

 Luczak, Pittel, Wierman (94):
the structure of a random graph in the critical window

p(λ) =
number of planar graphs with n

2 (1 + λn−1/3) edges( (n2)
n
2
(1+λn−1/3)

)
Hence...We need to count!



The symbolic method à la Flajolet

COMBINATORIAL RELATIONS between CLASSES

↕⇕↕

EQUATIONS between GENERATING FUNCTIONS

Class Relations

C = A ∪ B C(x) = A(x) + B(x)

C = A× B C(x) = A(x) ·B(x)
C = Seq(B) C(x) = (1−B(x))−1

C = Set(B) C(x) = exp(B(x))
C = A ◦ B C(x) = A(B(x))

All GF are exponential ≡ labelled objects

A(x) =
∑
n≥0

an
xn

n!



Trees
We apply the previous grammar to count rooted trees

⇒

T = • × Set(T )→ T (x) = xeT (x)

To forget the root, we just integrate: (xU ′(x) = T (x))

∫ x

0

T (s)

s
ds =

{
T (s) = u

T ′(s) ds = du

}
=

∫ T (x)

T (0)
1−u du = T (x)−1

2
T (x)2

and the general version

eU(x) = eT (x)e−
1
2
T (x)2



Unicyclic graphs

V =⃝≥3(T )→ V (x) =

∞∑
n=3

1

2

(n− 1)!

n!
(T (x))n

We can write V (x) in a compact way:

1

2

(
− log (1− T (x))− T (x)− T (x)2

2

)
→ eV (x) =

e−T (x)/2−T (x)2/4√
1− T (x)

.



Cubic planar multigraphs



Planar graphs arising from cubic multigraphs

In an informal way:

G(• ← T , • − • ← Seq(T ))



Weighted planar cubic multigraphs
Cubic multigraphs have 2r vertices and 3r edges (Euler’s
Relation)

G(x, y) =
∑
r≥1

gr
(2r)!

x2ry3r = g(x2y3)

We need to remember the number of loops and the number of
multiple edges to avoid symmetries:

weights 2−f1−f2(3!)−f3

1
2!

1
6x

2y3 1
2!

1
22
x2y3



The equations
We have equations defining G(z):

G(z) = expG1(z)

3z dG1(z)
dz = D(z) + C(z)

B(z) = z2

2 (D(z) + C(z)) + z2

2

C(z) = S(z) + P (z) + H(z) + B(z)

D(z) = B(z)2

z2

S(z) = C(z)2 − C(z)S(z)

P (z) = z2C(z) + 1
2z

2C(z)2 + z2

2

2(1 + C(z))H(z) = u(z)(1− 2u(z))− u(z)(1− u(z))3

z2(C(z) + 1)3 = u(z)(1− u(z))3.

u(z) is the INPUT: arising from map enumeration



The equations: an appetizer

All GF obtained (except G(z)) are algebraic GF; for instance:

1048576 z6 + 1034496 z4 − 55296 z2+(
9437184 z6 + 6731264 z4 − 1677312 z2 + 55296

)
C+(

37748736 z6 + 18925312 z4 − 7913472 z2 + 470016
)
C2+(

88080384 z6 + 30127104 z4 − 16687104 z2 + 1622016
)
C3+(

132120576 z6 + 29935360 z4 − 19138560 z2 + 2928640
)
C4+(

132120576 z6 + 19314176 z4 − 12429312 z2 + 2981888
)
C5+(

88080384 z6 + 8112384 z4 − 4300800 z2 + 1720320
)
C6+(

37748736 z6 + 2097152 z4 − 614400 z2 + 524288
)
C7+(

9437184 z6 + 262144 z4 + 65536
)
C8 + 1048576C9z6 = 0.



The estimates

I The excess of a graph (ex(G)) is the number of edges
minus the number of vertices

n![zn]

Trees, ex=−1︷ ︸︸ ︷
U(z)n−M+r

(n−M + r)!

Unicyclic, ex=0︷ ︸︸ ︷
e−T (z)/2−T (z)2/4√

1− T (z)

Cubic, ex=3r−2r=r︷ ︸︸ ︷
grT (z)2r

(1− T (z))3r

I We finally use saddle point estimates



Other applications



General families of graphs
Many families of graphs admit an straightforward analysis:

(Noy, Ravelomanana, R.)
Let G = Ex(H1, . . . , Hk) and assume all the Hi are 3-connected.
Let hr be the number of cubic multigraphs in G with 2r
vertices. Then the limiting probability that the random graph
G(n, n2 (1 + λn−1/3)) is in G is

pG(λ) =
∑
r≥0

√
2π

(2r)!
hrA

(
3r +

1

2
, λ

)
.

In particular, the limiting probability that G(n, n2 ) is in G is

pG(0) =
∑
r≥0

√
2

3

(
4

3

)r

hr
r!

(2r)!2
.

Moreover, for each λ we have

0 < pG(λ) < 1.



Examples...please

Some interesting families fit in the previous scheme:

I Ex(K4): series-parallel graphs: there are not 3-connected
elements in the family!

I Ex(K3,3): The same limiting probability as planar...
K5 does not appear as a core!

I Many others: Ex(K+
3,3), Ex(K

−
5 ), Ex(K2 ×K3) . . .

I PROBLEM: coloured graphs (in preparation...)

I PROBLEM: compute exactly for graphs on surfaces



Gràcies!
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