The probability
of planarity of a random graph
near the critical point

MARC NoOY, VLADY RAVELOMANANA, Juanjo Rué

Instituto de Ciencias Matematicas (CSIC-UAM-UC3M-UCM), Madrid
Freie Universitat Berlin, Berlin

XIX Midsummer Combinatorial Workshop, Praha

{ MAT CONSEJO SUPERIOR

' DE INVESTIGACIONES i ———
Instigto CIENTIFICAS Freie Universita

CsiC




The material of this talk

1.— Planarity on the critical window for random graphs
2.— Our result. The strategy
3.— Cubic planar multigraphs

4.— Other applications



Planarity on the critical window
for random graphs




The model G(n, M)

There are 2(3) labelled graphs with n vertices.
A random graph G(n, M) is the probability space with
properties:

» Sample space: set of labelled graphs with n vertices and

M = M(n) edges.
|

» Probability: Uniform probability (((]\24)) )
Properties:

O Fixed number of edges v

& The probability that a fixed edge belongs to the random
. n —1
graph is p = (2) M. v

& There is not independence.



The Erdds-Rényi phase transition

Random graphs in G(n, M) present a dichotomy for M = §:

1.—

(Subcritical) M = cn, ¢ < %: a.a.s. all connected
components have size O(logn), and are either trees or
unicyclic graphs.

(Critical) M = 5 + An?/3: a.a.s. the largest connected

component has size of order n?/3

(Supercritical) M = cn, ¢ > %: a.as. there is a unique
component of size of order n.

Double jump in the creation of the giant component.



The problem; what was known

ON THE EVOLUTION OF RANDOM GRAPHS
by
P. ERDOS and A. RENYI
Dedicated to Professor P. Turdn at
lis 50th birihday.

We can show that for N(n) ey Vn with any real A the probability
2

of ',y not being planar has a positive lower limit, but we cannot calculate
ts value. It may even be I, though this seems unlikely.

PROBLEM: Compute
p(A) = hm Pr{G (n,3(1+ An~ 1/3)) is planar }

What was known:
» Janson, Luczak, Knuth, Pittel (94): 0.9870 < p(0) < 0.9997
» Luczak, Pittel, Wierman (93): 0 < p(\) < 1

Our contribution: the whole description of p(\)



Our result. The strategy

Y e



The main theorem
Theorem (Noy, Ravelomanana, R.) Let g, be the number of
cubic planar weighted multigraphs with 2r vertices. Write
o—N\/6 (132/3)
) = gy 2 -
3(+1)/ KD ((y+1—2k)/3)

Then the limiting probability that the random graph
G (n, 2(1+ Mn~Y/3)) is planar is

P =Y P g (3 1),

= (2r)!

n

In particular, the limiting probability that G (n, 5) is planar is

S R

r>0



The strategy (1): pruning a graph
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The strategy (1): pruning a graph

The resulting multigraph is the core of the initial graph



The strategy (and Il): shape in the critical window

Luczak, Pittel, Wierman (94):
the structure of a random graph in the critical window

96

) number of planar graphs with % (1 + Mn~1/3) edges
p = n
(. B

2 (1+An~1/3)

Hence...We need to count!



The symbolic method a la Flajolet
COMBINATORIAL RELATIONS between CLASSES

)
EQUATIONS between GENERATING FUNCTIONS

Class Relations
C=AUB | C(z) = A(z) + B(x)
C=AxB | C(z)=A(z) B(x)
C =Seq(B) | C(z) = (1 - B(z))~"
C=Set(B) | C(x)=exp(B(z))
C=AoB | C(z)=A(B(x))

All GF are exponential = labelled objects



Trees
We apply the previous grammar to count rooted trees

%

T = e x Set(T) = T(z) = ze’@
To forget the root, we just integrate: (zU’(x) = T(x))

[0 {0 e [ e

and the general version




Unicyclic graphs

&

DRIt

o0

V=023(T) = V(e)=)_ % 2 ;vl)!(T(x))n
n=3 )

We can write V(x) in a compact way:

1 T(x)* Vi e T@/2-T@?HA
2( log (1 - T(x)) ~ T(x) - — )*@ T V1T



Cubic planar multigraphs



Planar graphs arising from cubic multigraphs

4{ 73

S

G(e<+ T, — e« Seq(T))



Weighted planar cubic multigraphs

Cubic multigraphs have 2r vertices and 3r edges (Euler’s
Relation)

Gr T, 3r
Gx,y) = (QT)!wQ Yy’ = g(z*y?)
r>1

We need to remember the number of loops and the number of
multiple edges to avoid symmetries:

weights 2 /17 /2 (3H)~

0%

ST
=
&
(Q
=
o
H
Q@



The equations
We have equations defining G(z):

G(2) = expGi(z)

3z 9G1(2) = D(2)+C(2)

B(2) = Z(DE) +C0R)+5

C(2) = S(z)+ P(2) + H(z) + B(2)
D(z) =

S(2) = C(2)? - C(2)8(2)

P(z) = 220(2) + $22C(2)* + &

21+ C(2))H(2) = u(2)(1-2u(2)) —u(x)(1 - u(2))’
20 +1)° = u(z)(1-u(2).

u(z) is the INPUT: arising from map enumeration



The equations: an appetizer

All GF obtained (except G(z)) are algebraic GF; for instance:

1048576 2° + 1034496 2% — 55296 2%+

(9437184 2% + 6731264 2* — 1677312 2% + 55296) C+
(37748736 2° 4 18925312 2* — 7913472 2% 4 470016) C*+
(88080384 25 + 30127104 z* — 16687104 2% + 1622016) C*+
(132120576 2° + 29935360 z* — 19138560 2% + 2928640) C*+
(132120576 2° + 19314176 2* — 12429312 2% + 2981888) C°+
(88080384 25 + 8112384 2* — 4300800 22 + 1720320) CO+
(37748736 2° + 2097152 z* — 614400 22 + 524288) C7+
(9437184 25 4 262144 2* + 65536) C® 4 1048576 C?25 = 0.



The estimates

» The excess of a graph (ex(G)) is the number of edges
minus the number of vertices

Trees, ex=—1 Unicyclic,ex=0 Cubic, ex=3r—2r=r
; ——
1[-7 U(z )” Mr G_T(Z)/Q_T(Z)z/4 ng(Z)Zr
n![z"] (n—M +r)! 1-T(2) (1—T(2))3

» We finally use saddle point estimates



Other applications



General families of graphs
Many families of graphs admit an straightforward analysis:

(Noy, Ravelomanana, R.)

Let G = Ex(Hy, ..., H;) and assume all the H; are 3-connected.
Let h, be the number of cubic multigraphs in G with 2r
vertices. Then the limiting probability that the random graph
G(n, 2(1+M~13)) isin G is

pg(\) = (\/%hrA <3r+ ;A) .

!
= 2r)!

In particular, the limiting probability that G(n, 5) is in G is

-2V () e

Moreover, for each A we have

0 <pg(A) < 1.



Examples...please

Some interesting families fit in the previous scheme:
» Ex(K4): series-parallel graphs: there are not 3-connected
elements in the family!

» Ex(K33): The same limiting probability as planar...
K5 does not appear as a core!

» Many others: EX(K;:,)), Ex(Ky ), Ex(K2 x K3) ...

» PROBLEM: coloured graphs (in preparation...)

» PROBLEM: compute exactly for graphs on surfaces



Gracies!
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