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Understanding structures by finite approximations

What can one say about a structure by
looking at its finite substructures?



Understanding structures by finite approximations

Let A be a countable relational structure.

Let age(A) be the class of all finite structures B such that
B →֒ A.

Properties of age(A):
◮ there are only countably many pairwise nonisomorphic

structures in age(A);
◮ Hereditary Property (HP):

if B ∈ age(A) and C →֒ B then C ∈ age(A);
◮ Joint Embedding Property (JEP):

for all B1,B2 ∈ age(A) there is a C ∈ age(A) such that
B1 →֒ C and B2 →֒ C.
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Understanding structures by finite approximations

Conversely, let K be a class of finite structures such that:
◮ there are only countably many pairwise nonisomorphic

structures in K;
◮ K has (HP); and
◮ K has (JEP).

Is there a countable strucutre A such that age(A) = K? YES

Is this structure unique (up to isomorphism)? NO

Example. It is obvious that age(N,6) = age(Z,6).



Understanding structures by finite approximations

What countable structures are uniquely
determined by their ages?

What classes of finite structures are ages
of such countable structures?



Understanding structures by finite approximations

A countable structure A is homogeneous if every isomorphism
f : B → C between finite substructures of A extends to an
automorphism of A.

A class K of finite structures is an amalgamation class if
◮ there are only countably many pairwise noniso struct’s in K;
◮ K has (HP);
◮ K has (JEP); and
◮ K has the Amalgamation Property (AP):

for all A,B, C ∈ K and embeddings
f : A →֒ B and g : A →֒ C, there exist D ∈ K
and embeddings u : B →֒ D and v : C →֒ D
such that u ◦ f = v ◦ g.

C
v
→֒ D

g →֒ →֒ u

A →֒
f

B



Understanding structures by finite approximations

Theorem. [Fraisse, 1953]

1 If A is a countable homogeneous structure, then age(A) is
an amalgamation class.

2 If K is an amalgamation class, then there is a unique (up to
isomorphism) countable homogeneous structure A such
that age(A) = K.

3 If B is a countable structure younger than A (that is,
age(B) ⊆ age(A)), then B →֒ A.

Definition. If K is an amalgamation class and A is the
countable homogeneous structure such that age(A) = K, we
say that A is the Fraı̈ssé limit of K.



Some Fraı̈ssé limits

(Q, <) = Fraı̈ssé limit of the class of all linear orders

Random graph = Fraı̈ssé limit of the class of all finite graphs

Random poset = Fraı̈ssé limit of the class of all finite posets
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(Q, <) = Fraı̈ssé limit of the class of all linear orders
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What do they look like?



Some Fraı̈ssé limits

Random graph

Vertices: N = {1,2,3, . . .}

Edges:

Let m = 〈asas−1 . . . a1〉2 and n = 〈btbt−1 . . . b1〉2.

Put m ∼ n if an = 1 or bm = 1



Some Fraı̈ssé limits

Random graph

Vertices: N = {1,2,3, . . .}

Edges:

Let m = 〈asas−1 . . . a1〉2 and n = 〈btbt−1 . . . b1〉2.

Put m ∼ n if an = 1 or bm = 1

What does the random poset look like? Hm. . .
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Recall: Von Neumann’s construction of ω in ZF

0 := ∅

1 := {0}

2 := {0,1}

3 := {0,1,2}

...

n := {0,1,2, . . . ,n − 1}

...

ω := {0,1, . . . ,n, . . .}



Recall: Construction of Q

Take Q∗ = Z× (Z \ {0}) and let

(a,b) ≈ (c,d) if ad = bc

For example, (1,2) ≈ (3,6) ≈ (−1,−2) ≈ . . . =:
1
2

Then Q = Q∗/≈.



Recall: Dedekind’s construction of R

Take any partition {L,R} of Q such that L < R

and form a new number x = (L | R)

with the intuition that L < x < R.



Conway’s class of surreal numbers S

J. H. Conway. On Numbers and Games. London Mathematical
Society Monographs, Academic Press, New York, 1976.
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Conway’s class of surreal numbers S

J. H. Conway. On Numbers and Games. London Mathematical
Society Monographs, Academic Press, New York, 1976.

D. E. Knuth. Surreal Numbers. Addison-Wesley, Redwood City,
CA, 1974.

Idea: Start making Dedekind-like cuts immediately!

If L and R are two sets of numbers such that no x ∈ L is greater
or equal to some y ∈ R, then (L | R) is a new number.

The intuition is that (L | R) is a cut which represents a new
number between L and R.
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Conway’s construction of S

0 := (∅ | ∅)

−1 := (∅ | {0}), ({0} | ∅) =: 1

−2 := (∅ | {−1}) ≈ (∅ | {−1, 0}) ≈ (∅ | {−1, 1}) ≈ (∅ | {−1, 0, 1})

2 := ({1} | ∅) ≈ ({0, 1} | ∅) ≈ ({−1, 1} | ∅) ≈ ({−1, 0, 1} | ∅)

−1
2 := ({−1} | {0})

1
2 := ({0} | {1})

0 ≈ ({−1} | {1})



Conway’s construction of S

The following inductive definition formally introduces names of
surreal numbers and a linear quasiorder 6S on names:

(1) If L and R are sets of names such that r 6S l for no l ∈ L
and no r ∈ R then (L | R) is a name.

(2) Let x = (L | R) and y = (U | V ) be names. Then x 6S y if
y 6S l for no l ∈ L and v 6S x for no v ∈ V .

x ≈ y if x 6S y and y 6S x .

x <S y if x 6S y and x 6≈ y .



Conway’s construction of S

Thus we get the following hierarchy of names, indexed by
ordinals:

◮ S0 = {(∅ | ∅)},
◮ Sα+1 = Sα ∪ {(L | R) : L,R ⊆ Sα and L <S R},
◮ Sλ =

⋃

α<λ
Sα, for a limit ordinal λ.

Then S =
⋃

α
Sα is the class of names,

and S/≈ is the class of surreal numbers.
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Conway’s class of surreal numbers S

S contains R

S contains all ordinals e.g. ω = ({1,2,3, . . .} | ∅)

S contains infinitesimals e.g. ǫ = ({0} | {1
n : n ∈ N})

S contains peculiarities e.g. ω − 1 = ({1,2,3, . . .} | {ω})

. . . and much more e.g. (ω − 1) + ǫ



Conway’s class of surreal numbers S

S is actually a field!

−x = (−Rx | −Lx)

x + y = ((Lx + y) ∪ (x + Ly ) | (Rx + y) ∪ (x + Ry ))

x · y = (L1 ∪ L2 | R1 ∪R2), where

L1 = {(xL · y) + (x · yL)− (xL · yL) : xL ∈ Lx , yL ∈ Ly},

L2 = {(xR · y) + (x · yR)− (xR · yR) : xR ∈ Rx , yR ∈ Ry},

R1 = {(xL · y) + (x · yR)− (xL · yR) : xL ∈ Lx , yR ∈ Ry},

R2 = {(xR · y) + (x · yL)− (xR · yL) : xR ∈ Rx , yL ∈ Ly}.

x−1 = (something quite awful)
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The Hubička-Nešetřil presentation of the random
poset

In their paper

J. Hubička, J. Nešetřil. Finite presentation of homogeneous
graphs, posets and ramsey classes. Israel Journal of
Mathematics 149 (2005), 21–44

J. Hubička and J. Nešetřil introduced an intriguing presentation
PS of the random poset in Sω.



The Hubička-Nešetřil presentation of the random
poset

For a,b ∈ Sω we write a 4 b if ({a} ∪ Ra) ∩ ({b} ∪ Lb) 6= ∅.

Let PS be the set of all m = (Lm | Rm) ∈ Sω such that:
◮ Lm and Rm are finite subsets of PS such that Lm ∩ Rm = ∅;
◮ x 4 y for all x ∈ Lm, y ∈ Rm;
◮ Lx ⊆ Lm for all x ∈ Lm, and Rx ⊆ Rm for all x ∈ Rm.

Theorem.

1 4 is a partial order on PS.

2 (PS,≺) is isomorphic to the random poset.

3 For all a,b ∈ PS, if a ≺ b then a <S b.



The arithmetic of the random poset

Lemma. The following holds for all a ∈ PS:

1 −(−a) = a;

2 −a ∈ PS.

For a,b ∈ PS define a + b as follows:

a + b =
(

(La + b) ∪ (a + Lb) ∪ (La + Lb) |

(Ra + b) ∪ (a + Rb) ∪ (Ra + Rb)
)

.



The arithmetic of the random poset

Theorem. (PS,+,−,0,4) is an ordered commutative monoid
with involution. In other words, the following holds for all
a,b, c,d ∈ PS:

1 a + b ∈ PS;

2 0 + a = a + 0 = a;

3 a + b = b + a;

4 −(a + b) = (−a) + (−b);

5 (a + b) + c = a + (b + c);

6 if a 4 b and c 4 d then a + c 4 b + d ;

7 if a ≺ b and c 4 d then a + c ≺ b + d .
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The arithmetic of the random poset

Why not more than that?

Recall: 0 = (∅ | ∅), −1 = (∅ | {0}), 1 = ({0} | ∅).

An easy computation shows that 1 + (−1) = ({−1} | {1}).

Clearly, 0 6= ({−1} | {1}) ∈ PS.

Therefore, x + (−x) 6= 0 in general.



The arithmetic of the random poset

Let N = {x ∈ PS : x ≈ 0}.

Lemma.

1 0 ∈ N ;

2 −N = N ;

3 N +N = N ;

4 a+N = b +N if and only if a+ (−b) ∈ N , for all a,b ∈ PS.

Theorem. (PS/N ,+,−,0,4) is an ordered abelian group.



Multiplication?

Bad luck!

Conway’s multiplication can be adapted, but it applies only to
“integers” in S:

Lemma. Assume that for some x , y ∈ PS we have Lx = ∅ or
Rx = ∅, and Ly = ∅ or Ry = ∅. Then x · y ∈ PS.

Example. Recall: 1
2 = ({0} | {1}) ∈ PS. One can show that

1
2 · 1

2 /∈ PS.



Open Problems

1 Is it possible to adapt Conway’s multiplication so that it
applies to the whole of PS?

2 Is it possible to adapt Conway’s inverse (x−1) so that it
applies to PS?

3 Is it possible to turn PS into a field (so that it corresponds
to the fact that Q is a field)?

4 There is a Hubička-Nešetřil presentation RS of the random
graph in terms of surreal numbers. Is it possible to adapt
Conway’s arithmetic operations to RS?
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