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Abstract

We introduce and study the fractional version of the graph domi-
nation game, where the moves are ruled by the condition of fractional
domination. Fundamental properties of this new game are proved,
including the existence of an optimal strategy for each player.

1 Preliminaries

In this paper we state results on a competitive optimization game concern-
ing graph domination. We should note at the beginning, however, that the
main theorems can be formulated and proved on a higher level of generality,
namely for vertex cover in hypergraphs (also called transversal, hitting set,
blocking set in different areas of discrete mathematics and computer science)
which is also equivalent to set cover by hypegraph duality. The vertex cover
formulation has implications not only for the classical version of graph dom-
ination, but also for a variant called total domination. Proofs — in the more
general setting — will be published in [9].

∗Research supported by the National Research, Development and Innovation Office –
NKFIH under the grant SNN 116095.
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We deal with finite undirected graphs G = (V,E). A vertex v ∈ V
dominates itself and its neighbors; that is, exactly the vertices contained in
the closed neighborhood N [v] of v. A subset S ⊂ V is called dominating
set if every vertex of G is dominated by at least one vertex from S, i.e.∪

v∈S N [v] = V . The smallest size of a dominating set in G is called the
domination number and is denoted by γ(G).

The domination game, introduced in [2], is a competitive optimization
version of graph domination. It is played on a graph G by two players,
namely Dominator and Staller, who take turns choosing a vertex such that
at least one previously undominated vertex becomes dominated.1 The game
is over when all vertices are dominated, and the length of the game is the
number of vertices chosen by the players. Dominator wants to finish the game
as soon as possible, while Staller wants to delay the end. Assuming that both
players play optimally and Dominator starts, the length of the game on G is
uniquely determined; it is called the game domination number of G and is
denoted by γg(G). Analogously, the Staller-start game domination number
of G, denoted by γ′

g(G), is the length of the game under the same rules when
Staller makes the first move.

Below we shall refer to these games as integer games, as opposed to their
fractional versions which will be introduced.

Following [2], the domination game has been studied further in many
papers, see e.g. [1, 3, 4, 11, 14, 18, 19, 20, 21, 22]. The notion also inspired
the introduction of the total domination game on graphs [5, 10, 15, 16, 17],
transversal game [6, 7] and domination game on hypergraphs [8].

2 Fractional domination game

A fractional dominating function of G = (V,E) is a function f : V 7→ [0, 1]
if
∑

u∈N [v] f(u) ≥ 1 holds for every vertex v in G. The minimum of the sum∑
v∈V f(v) over all such f is called the fractional domination number γ∗(G)

of G, introduced in [12, 13]. Observe that a dominating set corresponds to
a fractional dominating function f where every vertex is assigned to either 0
or 1.

A function d : V 7→ [0, 1] (omitting the local condition above on the
vertices) is called a partially dominating function; we denote by |d| the sum

1The condition turns out to be restrictive only for Staller.
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∑
v∈V d(v). Given a partially dominating function d, the associated (domi-

nation) load function is the function ℓ defined on V as

ℓ(v) = ℓ(v, d) = min{1,
∑

u∈N [v]

d(u)}

for every vertex v.
The fractional domination game starts with the all-0 load function ℓ(v) ≡

0, and is finished when the all-1 function ℓ(v) ≡ 1 is reached. Dominator and
Staller take turns making moves of weight 1 each, except possibly in the last
move which may be smaller. A move is a sequence (vi1 , w1), (vi2 , w2), . . . of
arbitrary length, with its submoves (vik , wk) (k = 1, 2, . . . ) where vi1 , vi2 , . . .
are vertices of G; any number of repetitions are allowed. Here w1, w2, . . . are
real numbers from (0, 1]; it is required that∑

k≥1

wk = 1

in each move except the last one, whereas
∑

k≥1wk ≤ 1 must hold in the last
move.

At the beninning the partially dominating function is d0 ≡ 0 and also the
load function is ℓ0 ≡ 0. After the ith move (i = 1, 2, . . . ) the values di(vj) are
calculated to obtain the new partially dominating function di by the rule

di(vj) = di−1(vj) +
∑
ik=j

wk

from which the corresponding load function ℓi is also derived. A move
(vi1 , w1), (vi2 , w2), . . . is legal if

(∗) For all k = 1, 2, . . . , there exists a vertex u ∈ N [vik ] with

ℓi−1(u) +
∑

u∈N [vis ], 1≤s≤k−1

ws ≤ 1− wk.

That is, in each submove there must exist a vertex whose load increases by
exactly the weight in the submove.

The value of the game G is |G| = |dq|, provided that the all-1 load function
is reached after a sequence of legal moves in the qth move; i.e., ℓq ≡ 1.
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Analogously to the integer game, also here Dominator wants a small |G|,
while Staller wants a large |G|. To define the fractional game domination
number γ∗

g(G), assume that Dominator starts the game on G, and consider
the set

DG = {a : Dominator has a strategy which ensures |G| ≤ a}.

Now, the fractional game domination number is defined as γ∗
g(G) = infDG.

Assuming that Staller starts the game, the Staller-start fractional game dom-
ination number γ∗

Sg(G) is defined similarly.

3 General results

As mentioned in the preliminaries, the main results can be stated in the more
general framework of vertex cover; here we formulate them for the domination
game only.

Optimal strategies. Consider the following set which corresponts to DG

from Staller’s viewpoint:

SG = {b : Staller has a strategy which ensures |G| ≥ b}.

Theorem 1. For every graph G,

inf(DG) = min(DG) = sup(SG) = max(SG) = γ∗
g(G)

and the corresponding equalities also hold for the Staller-start fractional game
domination number γ∗

Sg(G).

Finite moves. The definition of legal move admits the option that a player
splits the value 1 into an infinite number of pieces; e.g., wk = 2−k may also
be feasible (with suitable vik respecting (∗)). It turns out, however, that each
player can design an optimal strategy without moves consisting of infinitely
many submoves.

Theorem 2. For every graph G, each player has an optimal strategy such
that, in every move, each vertex occurs in at most one submove.
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The Rational Game. One may consider a restricted version of the frac-
tional domination game, in which the players are required to use only rational
weights wk in each submove. We define γQ

g (G) to be supSG = infDG under

this extra condition. Also for the Staller-start game, the notation γQ
Sg(G) can

be introduced.

Theorem 3. For every graph G, the equalities γQ
g (G) = γ∗

g(G) and γQ
Sg(G) =

γ∗
Sg(G) are valid.

Continuation Principle. A monotone property of the fractional domina-
tion number is expressed in the following idea, which provides a useful tool
in simplifying several arguments. Given G and a load function ℓ, let the
fractional game ℓ-domination number be denoted by γ∗

g(G|ℓ) = inf(D|ℓ) =
sup(S|ℓ), where inf(D|ℓ) and sup(S|ℓ) are defined analogously to DG and
SG, for the game starting with a load function ℓ on G with the move of
Dominator.

Theorem 4. If ℓ1 and ℓ2 are load functions on G such that ℓ1(v) ≤ ℓ2(v)
holds for every v ∈ V (G), then γ∗

g(G|ℓ1) ≥ γ∗
g(G|ℓ2).

An immediate consequence is

Theorem 5. The fractional game domination numbers for the Staller-start
and for the Dominator-start games on G may differ by at most 1.

4 Paths and cycles

The determination of exact values for γ∗
g(G) seems hard, even if G has a

very simple structure. We have estimates for paths and cycles in which the
difference of the upper and lower bounds does not exceed a small constant;
yet the numbers do not coincide. The currently known best bounds for cycles
are summarized in Table 1.

5 Comparison of domination parametes

Proposition 6. For any graph G, the following inequalities hold:

• γ∗(G) ≤ γ∗
g(G) < 2γ∗(G)
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≤ γ∗
g(Cn) γ∗

g(Cn) ≤

n ≡ 0 (mod 4) n
2
− 4

3
+ 4

3n
n
2

n ≡ 1 (mod 4) n
2
− 3

2
+ 4

3n
n
2
− 1

6

n ≡ 2 (mod 4) n
2
− 1 + 4

3n
n
2
− 1

3

n ≡ 3 (mod 4) n
2
− 7

6
+ 4

3n
n
2
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2

Table 1: Lower and upper bounds for cycles.

• γ∗(G) ≤ γ∗
Sg(G) < 2γ∗(G) + 1

• There does not exist any universal constant c > 0 with

cγg(G) ≤ γ∗
g(G).

• If every block of G is a complete graph (and in particular if G is a
tree), then

γg(G) + 1

2
≤ γ(G) = γ∗(G) ≤ γ∗

g(G).

6 Some open problems

We close these notes with three conjectures and a further problem.

Conjecture 1. If each of the first 2k − 1 (k ≥ 1) moves was integer move,
i.e. of the form (vi1 , 1), then Staller has an integer move in the (2k)th turn,
which is optimal in the fractional game.

This means that fractional moves would be advantageous for Dominator
only. If true then this conjecture implies the following weaker one.

Conjecture 2. For every graph G, γ∗
g(G) ≤ γg(G).

Conjecture 3. For every isolate-free graph G, γ∗
g(G) ≤ 3n/5.

Problem 1. Is there a constant c < 3/5 such that γ∗
g(G) ≤ c · n holds for

every isolate-free G?
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