

Diameter-Ramsey Sets

Jan Corsten Nóra Frankl

MCW XXIII, Prague 2018

The London School of Economics and Political Science Department of Mathematics

Notation

Given $X \subset \mathbb{R}^d$, $Y \in \mathbb{R}^n$ and $r \in \mathbb{N}$ we say that $Y \xrightarrow{r} X$ if in every *r*-colouring of *Y*, there is some monochromatic $X' \subset Y$ which is congruent to *X*.

Two sets $X \subset \mathbb{R}^d$ and $X' \subset \mathbb{R}^{d'}$ are congruent if there is an isometry $f : \mathbb{R}^d \to \mathbb{R}^{d'}$ such that X' = f(X).

Definition (Erdős–Graham–Montgomery–Rothschild–Spencer– Straus, 1973)

A set $X \subset \mathbb{R}^d$ is called *Ramsey* if for every $r \in \mathbb{N}$, there is some $n \in \mathbb{N}$, such that $\mathbb{R}^n \xrightarrow{r} X$.

There has been a lot of work in this area.

- Every Ramsey set must be finite and spherical (EGMRSS).
- Cartesian products of Ramsey sets are Ramsey (EGMRSS).
- Simplices are Ramsey (Frankl–Rödl, 1990).
- Regular polytopes are Ramsey (Kříž, 1991).

The problem of fully characterising Ramsey-sets remains open.

Conjecture (EGMRSS, 1973)

A set is Ramsey if and only if it is finite and spherical.

Conjecture (Leader-Russell-Walters, 2010)

A set is Ramsey if and only if it is contained in a finite transitive set.

Definition (Frankl-Pach-Reiher-Rödl, 2017)

A set $X \subset \mathbb{R}^d$ is called *diameter-Ramsey* if for every $r \in \mathbb{N}$, there is some $n \in \mathbb{N}$ and some $Y \subset \mathbb{R}^n$ with diam(X) = diam(Y) such that $Y \xrightarrow{r} X$.

FPRR proved the following facts about diameter-Ramsey sets.

- Every diameter-Ramsey set is Ramsey.
- Cartesian products of diameter-Ramsey sets are diameter-Ramsey.
- Acute and right-angled triangles are diameter-Ramsey.
- Almost-regular simplices are diameter-Ramsey.
- Triangles with an angle larger than 150° are not diameter-Ramsey.

Conjecture (Borsuk, 1933)

Every finite set $Y \subset \mathbb{R}^n$ can be partitioned into n + 1 sets of smaller diameter.

The *n*-simplex cannot be partitioned into *n* sets of smaller diameter.

Definition

Given some $X \subset \mathbb{R}^d$, let f(X, n) denote the maximum number $r \in \mathbb{N}$ for which there is some $Y \subset \mathbb{R}^n$ with diam(Y) = diam(X) such that $Y \xrightarrow{r} X$.

X is diameter-Ramsey if and only if $f(X, n) \to \infty$ as $n \to \infty$.

f(X, n) describes "how diameter-Ramsey" X is.

Borsuk's conjecture states that f(X, n) = n if |X| = 2.

Definition

Given some $X \subset \mathbb{R}^d$, let f(X, n) denote the maximum number $r \in \mathbb{N}$ for which there is some $Y \subset \mathbb{R}^n$ with diam(Y) = diam(X) such that $Y \xrightarrow{r} X$.

Conjecture (Borsuk, 1933) f(X, n) = n if X if |X| = 2.

Borsuk's conjecture is false, in fact $f(X, n) \ge 1.2^{\sqrt{n}}$ (Kahn–Kalai, 1993).

For every $d \in \mathbb{N}$, there is some $\varepsilon = \varepsilon(d) > 0$, such that $f(X, n) \ge (1 + \varepsilon)^{\sqrt{n}}$ for the regular *d*-simplex X (FPRR).

Every Ramsey set must be spherical; Every diameter-Ramsey set must in addition have small circumradius.

(The circumradius of a spherical set *X* is the radius of the smallest sphere containing *X*.)

Theorem (C.-Frankl N., 2017)

If $X \subset \mathbb{R}^d$ is a finite, spherical set with circumradius strictly larger than diam $(X)/\sqrt{2}$, then X is not diameter-Ramsey.

Corollary

Triangles with an angle larger than 135° are not diameter-Ramsey.

Proof

Theorem

If $X \subset \mathbb{R}^d$ is a finite, spherical set with circumradius strictly larger than diam $(X)/\sqrt{2}$, then X is not diameter-Ramsey.

To prove the theorem we embed a given set $Y \subset \mathbb{R}^n$ with diam(X) = diam(Y) in a ball and then colour the whole ball.

Theorem (Jung's inequality)

Every bounded set $Y \subset \mathbb{R}^n$ can be covered by a closed ball of radius $\sqrt{n/(2n+2)} \cdot \operatorname{diam}(Y) < \operatorname{diam}(Y)/\sqrt{2} < \operatorname{cr}(X)$.

Lemma

For every finite, spherical set $X \subset \mathbb{R}^d$ and every R < cr(X), there is some $r = r(X, R) \in \mathbb{N}$ such that $B_n(R) \xrightarrow{r} X$ for every $n \in \mathbb{N}$.

Proof

Lemma

For every finite, spherical set $X \subset \mathbb{R}^d$ and every R < cr(X), there is some $r = r(X, R) \in \mathbb{N}$ such that $B_n(R) \xrightarrow{r} X$ for every $n \in \mathbb{N}$.

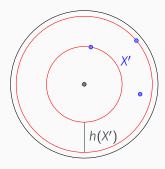
Proof.

For a congruent copy $X' \subset B_n(R)$ of X, define $h(X') := \max_{x,y \in X'} (||x|| - ||y||)$.

Since cr(X) > R, we have h(X') > 0 for every X'.

Using a compactness argument, we obtain $\min_{X'} h(X') > c > 0$.

Colour $B_n(R)$ concentrically with stripes of length c.



Proof

Lemma

For every finite, spherical set $X \subset \mathbb{R}^d$ and every R < cr(X), there is some $r = r(X, R) \in \mathbb{N}$ such that $B_n(R) \xrightarrow{r} X$ for every $n \in \mathbb{N}$.

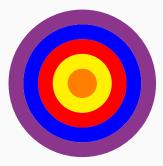
Proof.

For a congruent copy $X' \subset B_n(R)$ of X, define $h(X') := \max_{x,y \in X'} (||x|| - ||y||)$.

Since cr(X) > R, we have h(X') > 0 for every X'.

Using a compactness argument, we obtain $\min_{X'} h(X') > c > 0$.

Colour $B_n(R)$ concentrically with stripes of length c.



A triangle is diameter-Ramsey if its largest angle is at most 90°.

A triangle is not diameter-Ramsey if its largest angle is larger than 135°.

Question (Frankl P.-Pach-Reiher-Rödl, 2017)

Is there any obtuse triangle which is diameter-Ramsey?

Conjecture (C.-Frankl N., 2017)

A *d*-simplex is diameter-Ramsey if and only if its circumcentre is contained in its convex hull.

Thanks!