
Midsummer Combinatorial Workshop XXIII
July 30 - August 3, 2018, Prague

Jan Hubička, Karel Král, Jaroslav Nešetřil (eds.)



The workshop continues the tradition of Prague Combinatorial Workshops held since 1993.
Oriented on problems of all fields of graph theory, combinatorics and discrete geometry, it will
continue in the spirit and informal working atmosphere of the previous meetings.

The workshop takes place at DIMATIA and the Department of Applied Mathematics of Charles
University, Malostranské náměstí 25, Prague 1, which is located in a historic building in the center
of Old Prague.

Jan Hubička, Karel Král, Jaroslav Nešetřil

DIMATIA

2



Contents

Monday 5
9:30-10:00 Martin Loebl

Perfect matchings in double-torus grids . . . . . . . . . . . . . . . . . . . . . . . . . 5
10:45-11:15 Zdeněk Dvořák

Baker game and approximation algorithms on proper minor-closed classes . . . . . . 5
11:15-11:45 Martin Balko

Ramsey numbers and monotone colorings . . . . . . . . . . . . . . . . . . . . . . . . 5
11:45-12:15 Pierre Simon

Towards a classification of geometric homogeneous structures . . . . . . . . . . . . . 6
12:15-12:45 Dušan Knop

Integer Programming in Parameterized Complexity: Three Miniatures . . . . . . . . 6

Tuesday 7
9:00-9:30 Jan Kynčl

The Z2-genus of Kuratowski minors . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
9:30-10:00 Andreas E. Feldmann

The Parameterized Hardness of the k-Center Problem in Transportation Networks . 7
10:00-11:30 Pavel Hubáček

On Constant-Round Statistical Zero-Knowledge . . . . . . . . . . . . . . . . . . . . 7
11:00-11:30 Jan Corsten

Diameter-Ramsey sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
11:30-12:00 Zaniar Ghadernezhad

Amenable automorphism groups and convex Ramsey matrices . . . . . . . . . . . . 8
12:00-12:30 Lluis Vena

Chromatic number of subgraphs of the kneser graph . . . . . . . . . . . . . . . . . . 8

Wednesday 10
9:00-9:30 Václav Blažej

Online Ramsey numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
9:30-10:00 Josef Cibulka

Covering Lattice points by subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10:00-10:30 Endre Csóka

Local algorithms on random graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
11:00-11:30 Matěj Konečný

Completing edge-labelled graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
11:30-12:00 Günter Rote

Lattice Paths with States, and Counting Geometric Objects via Production Matrices 12

3



12:00-12:20 Jozsef Solymosi
Rigidity of graphs with given edge lengths . . . . . . . . . . . . . . . . . . . . . . . 13

Thursday 14
9:00-9:30 David Hartman

Equality of MH and HH classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9:30-10:00 Yelena Yuditsky

Almost all string graphs are intersection graphs of plane convex sets . . . . . . . . . 14
10:00-10:30 Robert Šámal

A rainbow version of Mantel’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 15
11:00-11:30 José Aliste

Rooted U-polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
11:30-12:00 Dragan Mašulović

Finite big Ramsey degrees in universal structures . . . . . . . . . . . . . . . . . . . 15
12:00-12:30 Gábor Kun

Graphings not local-global approximable by finite graphs . . . . . . . . . . . . . . . 16
14:00-14:30 Zsolt Tuza

Fractional version of the domination game . . . . . . . . . . . . . . . . . . . . . . . 16
14:30-15:00 Pavel Valtr

The exact chromatic number of the convex segment disjointness graph . . . . . . . . 21
15:00-15:30 Andrés Aranda – HE and MB-homogeneous graphs . . . . . . . . . . . . . . 21

Friday 22
9:00-9:30 Hiep Han

Erdős-Rothschild type problems for graph cliques and Schur triples . . . . . . . . . 22
9:30-10:00 Pavel Veselý

Online packet scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
10:00-10:30 Attila Dankovics

Hamiltonicity and low independence number imply pancyclicity . . . . . . . . . . . 23
11:00-11:30 Jana Syrovátková

Maximizing points in prisoners dilemma tournaments . . . . . . . . . . . . . . . . . 23
11:30-12:00 Demetres Christofides

Graphs of high girth and high chromatic number - new proofs . . . . . . . . . . . . 23
11:00-12:30 Jan Volec

Fractional colorings vs. Hall ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
12:30-13:00 Jan van den Heuvel

Universal Orderings for Generalised Colouring Numbers . . . . . . . . . . . . . . . . 24

4



Monday

Martin Loebl – Perfect matchings in double-torus grids
Joint work with Andrea Jimenez and Marcos Kiwi

It is known that the number of the perfect matchings of each finite double-torus grid is a linear
combination of 16 determinants. It is predicted by the Quantum field theory (Alvarez-Gaume,
Vaffa) that exactly 6 of these determinants go to zero when the size of the grid grows. I will
introduce the rich world around this claim.

Zdeněk Dvořák – Baker game and approximation algorithms
on proper minor-closed classes
Inspired by the Splitter game for nowhere-dense classes and Baker’s approach to design of approx-
imation algorithms, we propose a new game, show a strategy winning this game in a constant
number of rounds on proper minor-closed classes of graphs (without using the structure theorem),
and argue that the existence of such a strategy implies existence of polynomial-time approximation
schemes for a number of optimization problems.

Martin Balko – Ramsey numbers and monotone colorings
For positive integers N and r ≥ 2, an r-monotone coloring of r-tuples from [N ] is a 2-coloring by -1
and +1 that is monotone on the lexicographically ordered sequence of r-tuples of every (r+1)-tuple
from [N ]. Let ORS(n; r) be the minimum N such that every r-monotone coloring of r tuples from
[N ] contains n elements with all r-tuples of the same color.

For every r ≥ 3, it is known that ORS(n; r) is bounded from above by a tower function of height
r − 2 with O(n) on the top. The Erdős–Szekeres Lemma and the Erdős–Szekeres Theorem imply
ORS(n; 2) = (n−1)2 +1 and ORS(n; 3) =

(
2n−4
(n−2)

)
+1, respectively. It follows from a result of Eliáš

and Matoušek that ORS(n; 4) grows as a tower of height 2.
We show that ORS(n; r) grows at least as a tower of height r − 2 for every r ≥ 3. This, in

particular, solves an open problem posed by Eliáš and Matoušek and by Moshkovitz and Shapira.
Using two geometric interpretations of monotone colorings, we show connections between estimating
ORS(n; r) and two Ramsey-type problems that have been recently considered by several researchers.
We also prove asymptotically tight estimate on the number of r-monotone colorings of on [N ].
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Pierre Simon – Towards a classification of geometric homo-
geneous structures
We call a homogeneous structure geometric (or NIP) if it has polynomially many types over fi-
nite sets, or equivalently at most exponential growth of the number of finite substructures. Such
structures are usually order-like or tree-like. I will present the first step in the classification of the
order-like case. As an example, the classification of primitive homogeneous multi-orders, as well as
of their reducts, follows at once from it. I will end with a few open problems.

Dušan Knop – Integer Programming in Parameterized Com-
plexity: Three Miniatures
Powerful results from the theory of integer programming have recently led to substantial advances
in parameterized complexity. However, our perception is that, except for Lenstra’s algorithm for
solving integer linear programming in fixed dimension, there is still little understanding in the
parameterized complexity community of the strengths and limitations of the available tools.

Specifically, we consider graphs of bounded neighborhood diversity which are in a sense the
simplest of dense graphs, and we show several FPT algorithms for Sum Coloring by modeling it
as a convex program in fixed dimension, n-fold integer programs, and as ILP with bounded dual
treewidth and graver complexity.
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Tuesday

Jan Kynčl – The Z2-genus of Kuratowski minors
Joint work with Radoslav Fulek.

A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in
the drawing crosses an even number of times. The Z2-genus of a graph G is the minimum g such
that G has an independently even drawing on the orientable surface of genus g. An unpublished
result by Robertson and Seymour implies that for every t, every graph of sufficiently large genus
contains as a minor a projective t × t grid or one of the following so-called t-Kuratowski graphs:
K3,t, or t copies of K5 or K3,3 sharing at most 2 common vertices. We show that the Z2-genus of
graphs in these families is unbounded in t; in fact, equal to their genus. Together, this implies that
the genus of a graph is bounded from above by a function of its Z2-genus, solving a problem posed
by Schaefer and Štefankovič, and giving an approximate version of the Hanani–Tutte theorem on
orientable surfaces.

Andreas E. Feldmann – The Parameterized Hardness of the
k-Center Problem in Transportation Networks

Joint work with Dániel Marx.

We study the hardness of the k-Center problem on inputs that model transportation networks.
For the problem, an edge-weighted graph G = (V,E) and an integer k are given and a center set
C ⊆ V needs to be chosen such that |C| ≤ k. The aim is to minimize the maximum distance of
any vertex in the graph to the closest center. This problem arises in many applications of logistics,
and thus it is natural to consider inputs that model transportation networks. Such inputs are
often assumed to be planar graphs, low doubling metrics, or bounded highway dimension graphs.
For each of these models, parameterized approximation algorithms have been shown to exist. We
complement these results by proving that the k-Center problem is W[1]-hard on planar graphs of
constant doubling dimension, where the parameter is the combination of the number of centers k, the
highway dimension h, and even the treewidth t. Moreover, under the Exponential Time Hypothesis
there is no f(k, t, h) · no(t+

√
k+h) time algorithm for any computable function f . Thus it is unlikely

that the optimum solution to k-Center can be found efficiently, even when assuming that the input
graph abides to all of the above models for transportation networks at once!
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Pavel Hubáček – On Constant-Round Statistical Zero-Knowl-
edge

Based on joint work with Alon Rosen and Margarita Vald.

I will show how to overcome technical challenges when designing constant-round statistical zero-
knowledge proofs. Specifically, I will describe an unconditional transformation from any honest-
verifier statistical zero-knowledge protocol to a protocol where the statistical zero-knowledge prop-
erty holds against arbitrary verifiers.

Jan Corsten – Diameter-Ramsey sets
Joint work with Nóra Frankl.

A finite set A ⊂ Rd is called diameter-Ramsey if for every r ∈ N, there exists some n ∈ N and a
finite set B ⊂ Rn with diam(A) = diam(B) such that whenever B is coloured with r colours, there
is a monochromatic set A′ ⊂ B which is congruent to A. We prove that sets of diameter 1 with
circumradius larger than 1/

√
2 are not diameter-Ramsey. In particular, we obtain that triangles

with an angle larger than 135◦ are not diameter-Ramsey, improving a result of P. Frankl, Pach,
Reiher and Rödl. Furthermore, we deduce that there are simplices which are almost regular but
not diameter-Ramsey.

Zaniar Ghadernezhad – Amenable automorphism groups and
convex Ramsey matrices
A group G is amenable if every G-flow has an invariant Borel probability measure. Well-known
examples of amenable groups are finite groups, solvable groups and locally compact abelian groups.
Kechris, Pestov, and Todorcevic established a very general correspondence which equates a stronger
form of amenability, called extreme amenability, of the automorphism group of an ordered Fraïssé
structure with the Ramsey property of the collection of its finite substructures. In the same spirit
Moore showed a correspondence between the amenability of the automorphism groups of countable
structure and a structural Ramsey property called convex Ramsey property, which englobes Følner’s
existing treatment. The convex Ramsey property can be translated to a combinatorial condition
on matrices. We will consider automorphism groups of certain Hrushovski’s generic structures and
show that they are not amenable using certain matrices and exhibiting a combinatorial/geometrical
criterion which forbids amenability.

Lluis Vena – Chromatic number of subgraphs of the kneser
graph

Joint work with Bart Litjens, Sven Polak and Bart Sevenster.

Let n, k, r be positive integers with n ≥ kr and r ≥ 2. Consider a circle C with n points 1, . . . , n
in clockwise order. The r-stable interlacing graph IG(r)

n,k is the graph with vertices corresponding to
k-subsets S of {1, ..., n} such that any two distinct points in S have distance at least r around the
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circle, and edges between k-subsets P and Q if they interlace: after removing the points in P from
C, the points in Q are in different connected components. We show that the circular chromatic
number of IG(r)

n,k is equal to n/k, hence the chromatic number is dn/ke, and that its circular clique
number is also n/k.

Furthermore, we show that the independence number of IG(r)
n,k is the binomial coefficient

(
n−(r−1)k−1

k−1

)
.

This strengthens a result by Talbot, stating that the maximum size of a family of mutually inter-
secting r-stable k-sets of {1, ..., n} is

(
n−(r−1)k−1

k−1

)
(this is analogous to the Erdős-Ko-Rado theorem).

9



Wednesday

Václav Blažej – Online Ramsey numbers
The online Ramsey theory studies a game between Builder and Painter. They are given an arbitrary
graph H and a graph G of an infinite set of independent vertices. On each round, Builder builds a
new edge in G and Painter colors it either red or blue. The online Ramsey number of a graph H is
the minimum number of rounds Builder needs to force a monochromatic H to appear as a subgraph
of G.

In this talk we show strategies for Paths and Cycles. We also introduce upper bounds on strongly
induced online Ramsey numbers of Paths, Cycles and two families of trees, one of which has an
asymptotic difference to its size-Ramsey counterpart.

Josef Cibulka – Covering Lattice points by subspaces
Joint work with Martin Balko and Pavel Valtr.

Let d and k be integers with 1 ≤ k ≤ d − 1. The linear combination of points b1, . . . , bd ∈ Rd

with coefficients α1, . . . , αd ∈ R is the point α1b1 + · · · + αdbd. For linearly independent points
b1, . . . , bd ∈ Rd, the d-dimensional lattice Λ = Λ(b1, . . . , bd) with basis {b1, . . . , bd} is the set of all
linear combinations of the points b1, . . . , bd with integer coefficients. A linear subspace of Rd is the
set of all linear combinations of a set of points from Rd. The dimension k of a linear subspace is
the size of the smallest set of points that generate the subspace.

Let Λ be a d-dimensional lattice and let K be a d-dimensional compact convex body symmetric
about the origin. We provide estimates for the minimum number of k-dimensional linear subspaces
needed to cover all points in Λ ∩ K. In particular, our results imply that the minimum number
of k-dimensional linear subspaces needed to cover the d-dimensional n × · · · × n grid is at least
Ω(nd(d−k)/(d−1)−ε) and at most O(nd(d−k)/(d−1)), where ε > 0 is an arbitrarily small constant. This
nearly settles a problem mentioned in the book of Brass, Moser, and Pach [2]. We also find tight
bounds for the minimum number of k-dimensional affine subspaces needed to cover Λ ∩K.

We use these new results to improve the best known lower bound for the maximum number
of point-hyperplane incidences by Brass and Knauer [1]. For d ≥ 3 and ε ∈ (0, 1), we show that
there is an integer r = r(d, ε) such that for all positive integers n,m the following statement is
true. There is a set of n points in Rd and an arrangement of m hyperplanes in Rd with no Kr,r

in their incidence graph and with at least Ω
(
(mn)1−(2d+3)/((d+2)(d+3))−ε

)
incidences if d is odd and

Ω
(
(mn)1−(2d2+d−2)/((d+2)(d2+2d−2))−ε

)
incidences if d is even. Compared to the previous best bound,

this increases the exponent by Θ(1/d2). The gap in the exponents in the best known lower and
upper bounds remains of size Θ(1/d).
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Endre Csóka – Local algorithms on random graphs
Local algorithms on graphs mean constant-time randomized distributed algorithms. The most
common objectives of these algorithms are to construct large cuts or independent sets or other

locally defined structures on large graphs. It turns out that our best algorithms for most of these
problems can be approximated by local algorithms. We give an overview about positive and

negative results about what can be constructed by them, including some very recent algorithms
and entropic bounds. All these questions have strong connections to sparse graph limit theory and

statistical physics.

Matěj Konečný – Completing edge-labelled graphs
Joint work with Hubička and Nešetřil.

We study a variant of the completion (or extension) problem which, given a set L, a class C of
finite complete L-edge-labelled graphs and a finite L-edge-labelled graph G, asks whether there is
a completion G′ ∈ C of G, that is, a complete L-edge-labelled graphs on the same vertex set as G
whose labels agree with G on edges of G. We say that the completion problem is easy for a class C
if there is a family F of L-edge-labelled cycles such that

1. For every finite S ⊆ L there are only finitely many S-edge-labelled graphs in F ; and

2. an L-edge-labelled graph G has a completion in C if and only if G ∈ Forb(F) (that is, there
is no F ∈ F with a homomorphism F→ G).

We study this problem in context of amalgamation classes of edge-labelled graphs, because by
result of Nešetřil [7] we know that every Ramsey class is an amalgamation class. A complementing
result of Hubička and Nešetřil [6] says that an amalgamation class for which the completion problem
is easy “is not far from a Ramsey class”.

We introduce the concept of semigroup-valued metric spaces where the distances come from
a partially ordered commutative semigroup M and where one can further forbid a family of M-
edge-labelled cycles F . We show that if MM is the class of all finite M-valued metric spaces
and the family F is nice enough, then there is a family O of M-edge-labelled cycles such that an
M-edge-labelled graph G has a completion inMM ∩ Forb(F) if and only if G ∈ Forb(O).

In particular, we prove that the following gives such a completion (the required niceness of F
ensures that the infimum is defined):

Definition 1 (Shortest path completion). Let M = (M,⊕,�) be a partially ordered commutative
semigroup where ⊕ is monotone in � and let G = (V,E, `) with ` : E →M be an M -edge-labelled
graph. Define

d({x, y}) = inf
�
{‖P‖ : P is a path in G from x to y},
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where ‖P‖ is the ⊕-sum of the labels of P. We say that Ḡ = (V,
(

V
2

)
, d) is the shortest path

completion of G.

One then needs to do some more work to ensure that the completion problem is easy for (a
bi-definable expansion of)MM ∩ Forb(F) which in turn allows us to find their Ramsey expansions
and prove EPPA.

The concept of semigroup-valued metric spaces is quite robust, they in particular include Sauer’s
S-metric spaces [8, 6], Conant’s generalised metric spaces [4, 5], Braunfeld’s Λ-ultrametric spaces [2],
Cherlin’s metrically homogeneous graphs [3, 1] and other classes. Thus, we get Ramsey expansions
and EPPA for all of those, which were sometimes not known before. It also gives rise to the following
conjecture:

Conjecture 1. Let L be finite and let C be a class of L-edge-labelled graphs such that the completion
problem is easy for C. Then C admits a shortest path completion.
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Günter Rote – Lattice Paths with States, and Counting Ge-
ometric Objects via Production Matrices

Joint work with Andrei Asinowski and Alexander Pilz.

We consider paths in the plane governed by the following rules:
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1. There is a finite set of states.

2. For each state q, there is a finite set Sq of allowable

steps ((i, j), q′). This means that from any point (x, y) in state q, we can move to (x + i, y + i) in
state q′. We want to count the number of paths that go from (0, 0) in some starting state q0 to the
point (n, 0) in state q1 without going below the x-axis. Under some natural technical conditions, I
conjecture that the number of such paths is asymptotic to Cn/n3/2, and I will show how to compute
the growth constant C.

I will discuss how lattice paths with states can be used to model asymptotic counting problems
for some non-crossing geometric structures (such as trees, matchings, triangulations) on certain
structured point sets. These problems were recently formulated in terms of so-called production
matrices.

Jozsef Solymosi – Rigidity of graphs with given edge lengths
Joint work with Orit E. Raz.

We consider the notion of graph rigidity in R2. While the problem of determining whether an
embedding of a graph G in R2 is infinitesimally rigid is well understood, specifying whether a given
embedding of G is rigid or not is still a hard task that requires ad hoc arguments. In this work, we
show that every embedding (not necessarily generic) of a dense enough graph (concretely, a graph
with at least C0n

3/2 log n edges, for some absolute constant C0 > 0), which satisfies some very mild
general position requirements (no three vertices of G are embedded to a common line), must have
a subframework of size at least three which is rigid. For the proof we use a connection, established
in Raz [2], between the notion of graph rigidity and configurations of lines in R3. This allows us to
use properties of line configurations established in Guth and Katz [1].

We do not know whether our assumption on the number of edges being Ω(n3/2 log n) is tight,
and we provide a construction that shows that requiring Ω(n log n) edges is necessary.

Bibliography
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Thursday

David Hartman – Equality of MH and HH classes
Joint work with Andrés Aranda.

Homomorphism-homogeneity of relational structures requires every local homomorphism be-
tween finite induced substructures extends to surjective homomorphism on the whole structure [1].
Class of structures possessing this type of homogeneity is denoted as MH. In the same way class
MH can be defined via using morphism instead of homomorphism for a local mapping between
finite substructures. Since the original paper of Cameron and Nešetřil the question of relation-
ship between these two classes for various types of underlying structures is studied. Rusinov and
Schweitzer showed equality of these classes for undirected graphs answering thus open problem of
Cameron and Nešetřil. Later, equality these classes was shown for of finite L-colored graphs where L
is linear order or an anti-chain with additional minimal and maximal element [3]. These structures
are derived from ordinary graphs whose edges are further colored with sets of colors both taken
from partially ordered set L and corresponding homomorphisms preserve inclusion of colors. We
generalized this structure to allow colors for edges, partial ordered set Q, as well as vertices, partial
order set P , showing that for equality of classes for countable P,Q-colored graphs necessary as well
as sufficient condition is that Q is a linear order [4].

Bibliography
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Yelena Yuditsky – Almost all string graphs are intersection
graphs of plane convex sets

Joint work with János Pach and Bruce Reed.
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A string graph is the intersection graph of a family of continuous arcs in the plane. The inter-
section graph of a family of plane convex sets is a string graph, but not all string graphs can be
obtained in this way. We prove the following structure theorem conjectured by Janson and Uzzell:
The vertex set of almost all string graphs on n vertices can be partitioned into five cliques such that
some pair of them is not connected by any edge (n→∞). We also show that every graph with the
above property is an intersection graph of plane convex sets. As a corollary, we obtain that almost
all string graphs on n vertices are intersection graphs of plane convex sets.

Robert Šámal – A rainbow version of Mantel’s Theorem
Joint work with Ron Aharoni, Matt DeVos, Sebastian Gonzales, and Amanda Montejano.

Mantel’s Theorem asserts that a simple n vertex graph with more than 1
4n

2 edges has a trian-
gle (three mutually adjacent vertices). Here we consider a rainbow variant of this problem. We
prove that whenever G1, G2, G3 are simple graphs on a common set of n vertices and |E(Gi)| >
(26−2

√
7

81 )n2 ≈ 0.2557n2 for 1 ≤ i ≤ 3, then there exist distinct vertices v1, v2, v3 so that (working
with the indices modulo 3) we have vivi+1 ∈ E(Gi) for 1 ≤ i ≤ 3. We provide an example to show
this bound is best possible.

José Aliste – Rooted U-polynomials
The U polynomial was introduced by Noble and Welsh in 1999 and it generalizes the chromatic
symmetric function of Stanley. It is an open question whether there exist non-isomorphic trees
with the same U-polynomial. In this talk, we truncate the U-polynomial and for each k, we find
pairs of non-isomorphic trees with the same truncation of the U-polynomial. To construct these
trees we introduce and study the rooted U-polynomial for rooted trees and prove several algebraic
formulas that allow for simple computations of rooted polynomials, which can later be used to
deduce properties of the non-rooted versions U-polynomials of the trees involved.

Dragan Mašulović – Finite big Ramsey degrees in universal
structures
Let F be a countable ultrahomogeneous relational structure. A positive integer n is a big Ramsey
degree of a finite structure A in Age(F ) if n is the least integer such that for every k > 1 and every
coloring of copies of A in F with k colors there is a copy F ′ of F sitting inside F such that at most
n colors are used to color the copies of A that fall within F ′. If such an integer exists we say that
A has finite big Ramsey degree in F .

For example, Devlin proved in 1979 that finite chains have finite big Ramsey degrees in Q, Sauer
proved in 2006 that finite graphs have finite big Ramsey degrees in the Rado graph, and Dobrinen
has just recently proved that finite triangle-free graphs have finite big Ramsey degrees in the Henson
graph H3.

In this talk we consider the context where F is a countable structure universal for a class of
finite structures, but not necessarily a Fraisse limit. For each of the following classes of structures:
acyclic digraphs, finite permutations, a special class of finite posets with a linear order extending
the poset relation, and a special class of metric spaces we show that there exists a countably infinite
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universal structure S such that every finite structure from the class has finite big Ramsey degree
in S.

Gábor Kun – Graphings not local-global approximable by
finite graphs

Joint work with Andreas Thom.

We study the sofic approximations of Kazhdan groups. We show that a quite wide class of
graphings arising from group actions is not the local-global limit (or the action limit) of finite
graphs. This is the first example of such graphings.

Zsolt Tuza – Fractional version of the domination game
Joint work with Csilla Bujtás.

We introduce and study the fractional version of the graph domination game, where the moves
are ruled by the condition of fractional domination. Fundamental properties of this new game are
proved, including the existence of an optimal strategy for each player.

Preliminaries
In this paper we state results on a competitive optimization game concerning graph domination.
We should note at the beginning, however, that the main theorems can be formulated and proved on
a higher level of generality, namely for vertex cover in hypergraphs (also called transversal, hitting
set, blocking set in different areas of discrete mathematics and computer science) which is also
equivalent to set cover by hypegraph duality. The vertex cover formulation has implications not
only for the classical version of graph domination, but also for a variant called total domination.
Proofs — in the more general setting — will be published in [9].

We deal with finite undirected graphs G = (V,E). A vertex v ∈ V dominates itself and its
neighbors; that is, exactly the vertices contained in the closed neighborhood N [v] of v. A subset
S ⊂ V is called dominating set if every vertex of G is dominated by at least one vertex from S, i.e.⋃

v∈S N [v] = V . The smallest size of a dominating set in G is called the domination number and is
denoted by γ(G).

The domination game, introduced in [2], is a competitive optimization version of graph domi-
nation. It is played on a graph G by two players, namely Dominator and Staller, who take turns
choosing a vertex such that at least one previously undominated vertex becomes dominated.1 The
game is over when all vertices are dominated, and the length of the game is the number of vertices
chosen by the players. Dominator wants to finish the game as soon as possible, while Staller wants
to delay the end. Assuming that both players play optimally and Dominator starts, the length of
the game on G is uniquely determined; it is called the game domination number of G and is denoted
by γg(G). Analogously, the Staller-start game domination number of G, denoted by γ′g(G), is the
length of the game under the same rules when Staller makes the first move.

Below we shall refer to these games as integer games, as opposed to their fractional versions
which will be introduced.

1The condition turns out to be restrictive only for Staller.
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Following [2], the domination game has been studied further in many papers, see e.g. [1, 3, 4,
11, 14, 18, 19, 20, 21, 22]. The notion also inspired the introduction of the total domination game
on graphs [5, 10, 15, 16, 17], transversal game [6, 7] and domination game on hypergraphs [8].

Fractional domination game
A fractional dominating function of G = (V,E) is a function f : V 7→ [0, 1] if ∑u∈N [v] f(u) ≥ 1 holds
for every vertex v in G. The minimum of the sum ∑

v∈V f(v) over all such f is called the fractional
domination number γ∗(G) of G, introduced in [12, 13]. Observe that a dominating set corresponds
to a fractional dominating function f where every vertex is assigned to either 0 or 1.

A function d : V 7→ [0, 1] (omitting the local condition above on the vertices) is called a partially
dominating function; we denote by |d| the sum ∑

v∈V d(v). Given a partially dominating function
d, the associated (domination) load function is the function ` defined on V as

`(v) = `(v, d) = min{1,
∑

u∈N [v]
d(u)}

for every vertex v.
The fractional domination game starts with the all-0 load function `(v) ≡ 0, and is finished

when the all-1 function `(v) ≡ 1 is reached. Dominator and Staller take turns making moves
of weight 1 each, except possibly in the last move which may be smaller. A move is a sequence
(vi1 , w1), (vi2 , w2), . . . of arbitrary length, with its submoves (vik

, wk) (k = 1, 2, . . . ) where vi1 , vi2 , . . .
are vertices of G; any number of repetitions are allowed. Here w1, w2, . . . are real numbers from
(0, 1]; it is required that ∑

k≥1
wk = 1

in each move except the last one, whereas ∑k≥1 wk ≤ 1 must hold in the last move.
At the beninning the partially dominating function is d0 ≡ 0 and also the load function is

`0 ≡ 0. After the ith move (i = 1, 2, . . . ) the values di(vj) are calculated to obtain the new partially
dominating function di by the rule

di(vj) = di−1(vj) +
∑
ik=j

wk

from which the corresponding load function `i is also derived. A move (vi1 , w1), (vi2 , w2), . . . is legal
if

(∗) For all k = 1, 2, . . . , there exists a vertex u ∈ N [vik
] with

`i−1(u) +
∑

u∈N [vis ], 1≤s≤k−1
ws ≤ 1− wk.

That is, in each submove there must exist a vertex whose load increases by exactly the weight in
the submove.

The value of the game G is |G| = |dq|, provided that the all-1 load function is reached after a
sequence of legal moves in the qth move; i.e., `q ≡ 1.

Analogously to the integer game, also here Dominator wants a small |G|, while Staller wants a
large |G|. To define the fractional game domination number γ∗g(G), assume that Dominator starts
the game on G, and consider the set

DG = {a : Dominator has a strategy which ensures |G| ≤ a}.
Now, the fractional game domination number is defined as γ∗g(G) = inf DG. Assuming that Staller
starts the game, the Staller-start fractional game domination number γ∗Sg(G) is defined similarly.
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General results
As mentioned in the preliminaries, the main results can be stated in the more general framework
of vertex cover; here we formulate them for the domination game only.

Optimal strategies. Consider the following set which corresponts toDG from Staller’s viewpoint:

SG = {b : Staller has a strategy which ensures |G| ≥ b}.

Theorem 1. For every graph G,

inf(DG) = min(DG) = sup(SG) = max(SG) = γ∗g(G)

and the corresponding equalities also hold for the Staller-start fractional game domination number
γ∗Sg(G).

Finite moves. The definition of legal move admits the option that a player splits the value 1 into
an infinite number of pieces; e.g., wk = 2−k may also be feasible (with suitable vik

respecting (∗)).
It turns out, however, that each player can design an optimal strategy without moves consisting of
infinitely many submoves.

Theorem 2. For every graph G, each player has an optimal strategy such that, in every move, each
vertex occurs in at most one submove.

The Rational Game. One may consider a restricted version of the fractional domination game,
in which the players are required to use only rational weights wk in each submove. We define γQg (G)
to be supSG = inf DG under this extra condition. Also for the Staller-start game, the notation
γQSg(G) can be introduced.

Theorem 3. For every graph G, the equalities γQg (G) = γ∗g(G) and γQSg(G) = γ∗Sg(G) are valid.

Continuation Principle. A monotone property of the fractional domination number is expressed
in the following idea, which provides a useful tool in simplifying several arguments. Given G and a
load function `, let the fractional game `-domination number be denoted by γ∗g(G|`) = inf(D|`) =
sup(S|`), where inf(D|`) and sup(S|`) are defined analogously to DG and SG, for the game starting
with a load function ` on G with the move of Dominator.

Theorem 4. If `1 and `2 are load functions on G such that `1(v) ≤ `2(v) holds for every v ∈ V (G),
then γ∗g(G|`1) ≥ γ∗g(G|`2).

An immediate consequence is

Theorem 5. The fractional game domination numbers for the Staller-start and for the Dominator-
start games on G may differ by at most 1.

Paths and cycles
The determination of exact values for γ∗g(G) seems hard, even if G has a very simple structure. We
have estimates for paths and cycles in which the difference of the upper and lower bounds does not
exceed a small constant; yet the numbers do not coincide. The currently known best bounds for
cycles are summarized in Table 1.
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≤ γ∗g(Cn) γ∗g(Cn) ≤

n ≡ 0 (mod 4) n
2 −

4
3 + 4

3n
n
2

n ≡ 1 (mod 4) n
2 −

3
2 + 4

3n
n
2 −

1
6

n ≡ 2 (mod 4) n
2 − 1 + 4

3n
n
2 −

1
3

n ≡ 3 (mod 4) n
2 −

7
6 + 4

3n
n
2 −

1
2

Table 1: Lower and upper bounds for cycles.

Comparison of domination parametes
Proposition 6. For any graph G, the following inequalities hold:

• γ∗(G) ≤ γ∗g(G) < 2γ∗(G)

• γ∗(G) ≤ γ∗Sg(G) < 2γ∗(G) + 1

• There does not exist any universal constant c > 0 with

cγg(G) ≤ γ∗g(G).

• If every block of G is a complete graph (and in particular if G is a tree), then

γg(G) + 1
2 ≤ γ(G) = γ∗(G) ≤ γ∗g(G).

Some open problems
We close these notes with three conjectures and a further problem.

Conjecture 1. If each of the first 2k− 1 (k ≥ 1) moves was integer move, i.e. of the form (vi1 , 1),
then Staller has an integer move in the (2k)th turn, which is optimal in the fractional game.

This means that fractional moves would be advantageous for Dominator only. If true then this
conjecture implies the following weaker one.

Conjecture 2. For every graph G, γ∗g(G) ≤ γg(G).

Conjecture 3. For every isolate-free graph G, γ∗g(G) ≤ 3n/5.

Problem 1. Is there a constant c < 3/5 such that γ∗g(G) ≤ c · n holds for every isolate-free G?
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Pavel Valtr – The exact chromatic number of the convex
segment disjointness graph

Joint work with Ruy Fabila-Monroy, Jakob Jonsson, and David Wood.

Let P be a set of n points in strictly convex position in the plane. Let Dn be the graph whose
vertex set is the set of all line segments with endpoints in P , where disjoint segments are adjacent.
The chromatic number of this graph was first studied by Araujo, Dumitrescu, Hurtado, Noy, and
Urrutia [2005] and then by Dujmovic and Wood [2007]. Improving on their estimates, we prove the
following exact formula for the chromatic graph of Dn: χ(Dn) = n− [

√
n+ 1/4− 1/2.

Andrés Aranda – HE and MB-homogeneous graphs
Joint work with

HE-homogeneous structures satisfy that any homomorphism between finite induced substruc-
tures extends to a surjective endomorphism. In MB-homogeneous structures, any monomorphism
between finite induced substructures extends to a bijective endomorphism. In this talk, I will show
that all MB-homogeneous graphs are HE-homogeneous and all "interesting" (i.e., not a union of
cliques) HE-homogeneous graphs are MB-homogeneous.
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Friday

Hiep Han – Erdős-Rothschild type problems for graph cliques
and Schur triples
A Kk-free r-coloring of a graph G is a coloring of its edges with r colors with no monochromatic
Kk. Motivated by a question of Erdős and Rothschild we investigate, for given k, r and n, those
graphs on n vertices which admit the largest number of Kk-free r-colorings.

For r = 2 and k = 3 this problem was resolved by Yuster and later on the result was extended to
r = 2, 3 and arbitrary k ≥ 3 by Alon et al. For r ≥ 4 the problem becomes considerably harder and
despite vivid interest it is only resolved for r = 4 and k = 3 and for r = 4 and k = 4 by Pikhurko
and Yilma.

In this talk, we first revisit the result of Alon et al before focusing on K3-free r-colorings for
r = 5 and r = 6. Further, we investigate the closely related problem concerning sum-free r-colorings
of subsets of finite Abelian groups.

Pavel Veselý – Online packet scheduling
Joint work with Marek Chrobak, Łukasz Jeż, and Jiří Sgall.

In the online bounded-delay packet scheduling problem (PacketScheduling),the goal is to sched-
ule transmissions of packets that arrive over time in a network switch to be sent across a link.
Each packet has a deadline, representing its urgency, and a weight, representing its priority. Only
one packet can be transmitted in any time slot, so, if the system is overloaded, some packets will
inevitably miss their deadlines and be dropped. In this scenario, the natural objective is to maxi-
mize the total weight of transmitted packets. The problem is inherently online, with the scheduling
decisions made without the knowledge of future packet arrivals. The central problem concerning
PacketScheduling, that has been a subject of intensive study since 2001, is to determine the opti-
mal competitive ratio of online algorithms, namely the worst-case ratio between the optimum total
weight of a schedule (computed by an offline algorithm) and the weight of a schedule computed by
a (deterministic) online algorithm.

We solve this open problem by presenting a φ-competitive online algorithm for PacketScheduling
(where φ ≈ 1.618 is the golden ratio), matching the previously established lower bound.
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Attila Dankovics – Hamiltonicity and low independence num-
ber imply pancyclicity
Given a Hamiltonian graph G with independence number at most k we are looking for the minimum
number of vertices f(k) that guarantees that G is pancyclic. The problem of finding f(k) was raised
by Erdős who showed that f(k) ≤ 4k4, and conjectured that f(k) = 3DΘ(k2). Formerly the best
known upper bound was f(k) = 3DO(k7/3) by Lee and Sudakov. We improve this bound and show
that f(k) = 3DO(k11/5).

Jana Syrovátková – Maximizing points in prisoners dilemma
tournaments
Prisoner’s dilemma is a well-known concept. Robert Axelrod initiated the study of tournaments
of finite automata playing repeated prisoner’s dilemma. Similar tournaments have appeared after-
wards. The strategy is written in the form of a finite automaton, the number of rounds is given by
a random geometric distribution. In the tournament every automaton plays with every other one.
Our goal was to create an automaton that will maximize the score earned in the tournament for a
given set of opponents.

In the first stage, we convert the opponent’s finite automaton into an oriented graph describing
the possible iterations of repeated play. In the second phase, we search the walk in this graph that
maximizes the score. To play against one automaton, the best combination consists of a path and
a cycle sharing one common vertex. Finding the best automaton can be done in time O(n2), where
n is the number of states of the opponent’s automaton.

When playing against multiple automata, a graph with states from the Cartesian product of the
states of the original automata is created. The states are also merged into groups according to the
automata responses during the game. Within them, the solution is again the combination of path
and cycle. If n is the number of states of the opponent’s automaton with the most states and m the
product of the number of states of all the automata, the search can be performed in time O(mn).

Demetres Christofides – Graphs of high girth and high chro-
matic number - new proofs
A celebrated result of Erdő shows that there exists graphs of arbitrarily large girth and chromatic
number. Erdő’s construction proceeds in two stages. It first picks a graph from the classical Erdő-
Renyi model of random graphs (with an appropriate probability) and it then removes some vertices
belonging to short cycles.

In this talk we present a new proof of Erdő’s result. The construction is again probabilistic but
taken from a model of random Cayley graphs. A difference between this proof and the old one is
that in this proof the rendom graph picked will already have the required properties without the
need to remove any vertices.
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Jan Volec – Fractional colorings vs. Hall ratio
Joint work with J. Balogh, A. Kostochka, S. Norin and A. Blumenthal, B. Lidicky, R. Martin, Y.

Pehova, and F. Pfender.

If G is an n-vertex graph with the chromatic number k and the independence number a, then
k ≥ n/a. However, for many graphs G this bound can get very bad, and it is easy to show there is
in no function g which would upper-bound the chromatic number by g(n/a).

In this talk, we study a relation between the fractional chromatic number, which can be viewed
as a relaxation of the chromatic number, and a hereditary variant of the ratio between the number
of vertices and the independence number, called the Hall ratio. By averaging, the Hall ratio is
always a lower bound on the fractional chromatic number. In 2009, Johnson asked if the fractional
chromatic number can be also upper-bounded by a linear function of the Hall ratio, and in 2016,
Harris conjectured that this should be the case. We disprove Harris conjecture, and discuss further
problems concerned with the relation between these two parameters.

Jan van den Heuvel – Universal Orderings for Generalised
Colouring Numbers

Joint work with H.A. Kierstead.

The generalised colouring numbers were introduced by Kierstead and Yang as a generalisation
of the usual colouring number, and have since found important theoretical and algorithmic applica-
tions. The definitions of these numbers involve a given distance and linear orderings of the vertices
of the graphs. For different distances, the optimal orderings can be completely different. We show
that it is possible to find a single uniform ordering that approximates (in a precisely prescribed
way) all the generalised colouring numbers of that graph. These uniform orderings also provide a
new characterisation of graph classes of bounded expansion, where for every class in the graph we
need only find one uniform ordering.
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