Antipodal monochromatic paths in hypercubes

Tomáš Hons, Marian Poljak, Tung Anh Vu

Mentor: Ron Holzman

2020 DIMACS REU program, 2020/06/01

This work was carried out while the authors were participants in the 2020 DIMACS REU program, supported by CoSP, a project funded by European Union's Horizon 2020 research and innovation programme, grant agreement No. 823748.

Hypercubes

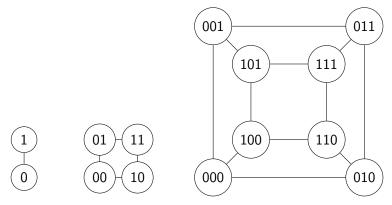


Figure: From left to right, graphs Q_1 , Q_2 and Q_3 .

Definition

The *n*-dimensional hypercube Q_n is an undirected graph with $V(Q_n) = \{0,1\}^n$ and $E(Q_n) = \{(u,v): u \text{ and } v \text{ differ in exactly one coordinate}\}$.

Antipodal vertices

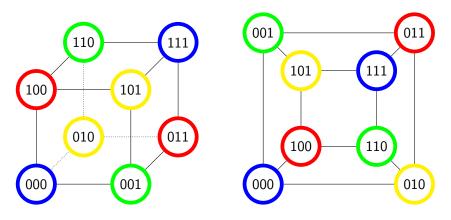


Figure: Q_3 , antipodal vertices are marked with the same color.

Definition

Let u be a vertex of the hypercube Q_n . Its antipodal vertex u' is the vertex which differs from u in every coordinate.

Antipodal edges

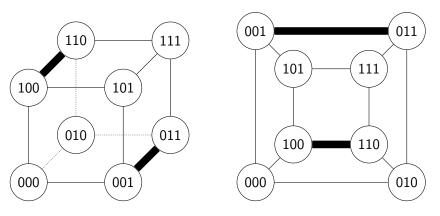


Figure: An example of a pair of antipodal edges in Q_3 is drawn by a thick line.

Definition

Let e = (u, v) be an edge of the hypercube Q_n . Its antipodal edge is the edge e' = (u', v').

Colorings

Definition

An *edge* 2-*coloring* is any mapping $c : E(Q_n) \rightarrow \{\text{red}, \text{ blue}\}.$

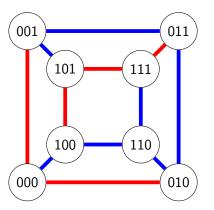


Figure: A 2-coloring of Q_3 .

Question

Given any edge 2-coloring of a Q_n , is there always a pair of antipodal vertices such that there is a monochromatic path connecting them?

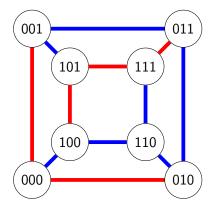


Figure: A 2-coloring of Q_3 .

Question

Given any edge 2-coloring of a Q_n , is there always a pair of antipodal vertices such that there is a monochromatic path connecting them?

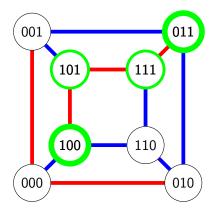


Figure: A 2-coloring of Q_3 .

Not really :(

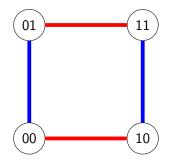


Figure: A possible coloring of Q_2 .

Thank you for your attention!

Antipodal colorings

Definition

An edge 2-coloring is antipodal if all pairs of antipodal edges have different colors.

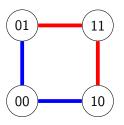


Figure: The only antipodal coloring of Q_2 .

Conjecture (S. Norine)

For any antipodal coloring of a hypercube Q_n there always exists a pair of antipodal vertices $x, x' \in V(Q_n)$ such that there is a monochromatic path connecting x and x'.

Note

This conjecture has been verified for $n \le 6$ (see [WW19]).

Loosening antipodality

Definition

A path P is a k-switch path for some $k \ge 0$ if P is a concatenation of at most k+1 monochromatic paths. Note that the coloring does not have to be antipodal.

Norine's conjecture restated: Is there always a 0-switch path between some pair of antipodal vertices of Q_n for all antipodal colorings?

Loosening antipodality

Conjecture (T. Feder, C. Subi) [FS13]

For any coloring¹ of a hypercube Q_n there always exists a pair of antipodal vertices $x, x' \in V(Q_n)$ such that there is a 1-switch path connecting x and x'.

Note

This conjecture has been verified for $n \le 5$ in [FS13] and if it holds, it implies Norine's conjecture.

¹Not necessarily antipodal.

Find an upper bound on the number of switches.

- Find an upper bound on the number of switches.
 - ► Current best bound: $(\frac{3}{8} + o(1)) n$ by V. Dvořák [Dvo19].

- Find an upper bound on the number of switches.
 - ► Current best bound: $\left(\frac{3}{8} + o(1)\right) n$ by V. Dvořák [Dvo19].
- Generalize the conjecture to more general graphs than hypercubes (see [Sol17]).

- Find an upper bound on the number of switches.
 - ► Current best bound: $(\frac{3}{8} + o(1)) n$ by V. Dvořák [Dvo19].
- Generalize the conjecture to more general graphs than hypercubes (see [Sol17]).
- ▶ Determine the expected number of switches over all pairs of antipodal vertices in Q_n for fixed n.

- Find an upper bound on the number of switches.
 - ► Current best bound: $(\frac{3}{8} + o(1)) n$ by V. Dvořák [Dvo19].
- Generalize the conjecture to more general graphs than hypercubes (see [Sol17]).
- ▶ Determine the expected number of switches over all pairs of antipodal vertices in Q_n for fixed n.
- Fix a pair of antipodal vertices x, x' in Q_n . Determine the average number of switches between x and x' all possible colorings.

References

A note on Norine's antipodal-colouring conjecture. arXiv preprint arXiv:1912.07504, 2019.

Tomás Feder and Carlos Subi.

On hypercube labellings and antipodal monochromatic paths. *Discrete Applied Mathematics*, 161(10-11):1421–1426, 2013.

Daniel Soltész.
On the 1-switch conjecture.

Discrete Mathematics, 340(7):1749–1756, 2017.

Douglas B West and Jennifer I Wise. Antipodal edge-colorings of hypercubes. Discussiones Mathematicae Graph Theory, 39(1):271–284, 2019.