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Our project: Updating colorings

We start with a (non-proper) coloring c0 of a graph G using three
(or more) colors, and a given sequence v1 . . . , vT of vertices

At time k ∈ {1, . . .T}, we update the color of vk - we look at its
neighborhood, and if it has x blue neighbors, the probability of
the new color of vk being blue is proportional to λx , where λ > 1
is some constant.

Problem:
Which choice of the initial coloring c0 makes the event that at time T ,
all vertices are colored blue, most likely?

The obvious answer seems to be color everything blue - this is
true for two colors, but it remains an open problem for more than
two.
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Updating colorings 2.

Coloring everything blue is not the best starting point if instead of
the exponential λx , we choose some arbitrary increasing function
F (x).

If all blue is the best starting point for the exponential (or a
broader class of increasing functions), some other property, like
convexity, must be behind it.

Related problems include asking for the probability of a specific
vertex being colored blue at the end, etc.
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More formal statement of the setting

Suppose a finite, connected graph G = (V ,E). Our random
coloring process is a Markov chain (Xt), with state space QV ,
where Q is a finite set of colors. Let F be an increasing function
on N.
At time t , the chain moves as follows: pick a vertex v , and for a
coloring x ∈ QV take the set

S(x , v) =
{

y ∈ QV : y(w) = x(w) ∀ w 6= v
}
.

Then, the transition probability P(x , y) = P[Xt+1 = y |Xt = x ] is

P(x , y) =

{
F(Nx

y(v)(v))
Z (x,v ,F ) if y ∈ S(x , v)

0 else,

where Nx
y (v) is the number of the neighbors of v with color y(v)

in x , and Z (x , v ,F ) =
∑

q∈Q F
(
Nx

q (v)
)
.
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Formal statement of the problem

Problem:
For which functions F is it true that, for any choice of the graph G,
stopping time T and the sequence {v1, . . . vT} we have

P[XT = b|X0 = b] ≥ P[XT = b|X0 = x ],

for all x ∈ QV , (where b is the all blue coloring)?
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Second project: Words solving infinite mazes

Suppose we have a robot trying to solve a maze M, where a
maze is a subgraph of an n × n grid.
The robot moves according to a sequence W of instructions (Up,
Down, Right, Left), if it can, and stays still otherwise.
A word W solves M if by following W the robot reaches every
vertex of M eventually.

Problem:
Is there an infinite word W that simultaneously solves every maze in
the infinite square grid Z× Z?
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Thank you!
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