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> Setting: Graph edges stream by one at a time in adversarial
order.

» Graph coloring: a function C : V — [k] which maps adjacent
vertices to different values is a k-coloring.

» Want to color the graph with few colors, while using small
space.

» With n the number of vertices, can store entire graph in 0(n?)
space — would like to use o(n?) space (and ideally O(n)).
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Motivation

» All graphs admit a (A + 1)-coloring, where A is the maximum
degree of the graph.

» Can be obtained greedily.
» By a result of Assadi, Chen and Khanna (SODA'19) [1], can
(A + 1)-color in O(n) space with a randomized algorithm.
» Almost all graphs admit a A-coloring: Every connected graph
which is not a clique or an odd-cycle can be A-colored
(Brook's Theorem).

» Can we find a A-coloring in o(n?) space?



Our result

Theorem

There is an O(n7/4) space that given one pass over edges of any
graph G = (V, E) with maximum degree A, with high probability,
finds a A-coloring of G or outputs that G does not admit a
A-coloring.



Preliminaries

We use the Extended HSS Decomposition from [1], which for any
e € [0,1) decomposes a graph G(V/, E) into:
» Sparse vertices: Neighbourhood of each sparse vertex is
missing at least s(é) edges.
» A collection of almost-cliques; each almost-clique C:
> contains (14 ¢)A vertices.

> every vertex in C has < A neighbours outside C.
» every vertex in C has < e/ non-neighbours inside C.



Preliminaries

We use the Extended HSS Decomposition from [1], which for any
e € [0,1) decomposes a graph G(V/, E) into:
» Sparse vertices: Neighbourhood of each sparse vertex is
missing at least s(é) edges.
» A collection of almost-cliques; each almost-clique C:
> contains (14 ¢)A vertices.

> every vertex in C has < A neighbours outside C.
» every vertex in C has < e/ non-neighbours inside C.

Can be found in a single pass using O(n/c?) space ([1]).
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Sparse recovery

Lemma

For any n >0 and k < n, there exists a set of m = O(k log )
measurements A € FJ'*" for recovering any k-sparse vector

x € F5. Moreover A chosen randomly has this property with
high-probability.

» Want to find y" (adjacency vector) for each v € C; for some i.

> vV only A-sparse, instead find x¥ = y¥ — z€, where z€ is
characteristic vector of almost-clique C containing v
(O(eA)-sparsel!)

> A-yY easy to update while streaming, can compute A- z¢

from decomposition at end of stream.

» Can find all edges incident on almost cliques in 5(n5A) space
(as opposed to O(nA) which is trivial).
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Saving Colors on VP**¢

» Cannot extend arbitrary A-coloring outside almost-cliques to
them.

Vsparse

> If we “save” some colors on can extend (sketch Iater).

» We will list-color V;P2"*¢

using (1 — d)A colors, where § = 100.
Before streaming edges: for each vertex, pick list of colors

L(v) C [(1 —0)A], with each color independently in L(v) with
probability p := 331('%5”)

Lemma

With high probability, there exists a partial coloring function

C:V —=[(1-9)AlU{L} such that for all vertices

v e VPR C(v) e L(v).



Extending the coloring to almost-cliques

This lemma is our main contribution:

Lemma
Given a partial coloring ® of G which colors only VP using
(1 —&2/100)A colors, where (¢2/100)A > 8n/A, and all the edges

incident on almost-cliques of G, we can find a proper A—coloring
of G.



Proof Sketch

\ . Vertices promised
| Apply the reduction rules R to be colored by
z reduction rules
G with partially colored V,***
/ Delete the vertices
« v* :  promised to be colored
N /by reduction rules,

put back the deleted vertices

and color them using the color the vertices in base case using

algorithms available with colors (will have no edges incident to
sparse

the applied reduction rules *

Figure: Overall idea



Proof Sketch (continued)

Common Theme: in all the cases we color a rooted spanning tree
where the root has < A colors in its (fully colored) neighbourhood
by either the structure of the graph, or by recoloring a vertex with
a previously saved color (inspired by Lovész's proof of Brook's
Theorem [2]).



Proof Sketch (continued)

R
X
[
almost-clique C spanning tree of C-{u,v}
with a missing rooted at x

edge {u,v}

Figure: Rule I. Can color almost-cliques with an edge missing inside.



Proof Sketch (continued)

x;g;@ﬁ g

u

almost-clique C spanning tree of C
with degree < A rooted at u

Figure: Rule Il. Can color almost-cliques with a vertex of degree < A



Proof Sketch (continued)

actual clique C, actual clique C,

CiU C\ {u,x} has a
spanning tree rooted at v

Figure: Rule Ill. Can color two cliques with two edges between them



Proof Sketch (continued)

fresh saved colors
are available to x
and v

Sparse
vevr

actual clique C with an
edge {u,v} to a sparse vertex v spanning tree for C
rooted at u

we can build the

Figure: Rule IV. 1 saved color per remaining clique with an edge to a
sparse vertex



Tying things up

» Storing edges incident on almost cliques takes 5(n5A) space.

> Extended HSS decomposition takes O(n/e2) space.
log A
ALl/4 "
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» (1 — §)A-coloring sparse vertices only works if € >



Tying things up

» Storing edges incident on almost cliques takes 5(n5A) space.

> Extended HSS decomposition takes O(n/e2) space.

log A
A1/4 .
» Extending coloring to almost-cliques only works if ¢ > Y=

With e = 'Zgﬁ, we get O(n’/*) algorithm.

» (1 — §)A-coloring sparse vertices only works if € >




References

S. Assadi, Y. Chen, and S. Khanna.
Sublinear algorithms for (A + 1) vertex coloring.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pages 767-786. SIAM, 2019.

L. Lovész.
Three short proofs in graph theory.
J. Combinatorial Theory Ser. B, 19(3):269-271, 1975.

u}
o)
I
i
it



Acknowledgements

We would like to thank:
» Rutgers University, for organising this program.

» CoSP for supporting our participation (under European
Union’s Horizon 2020 research and innovation programme,
grant agreement No. 823748)



