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Introduction

I Setting: Graph edges stream by one at a time in adversarial
order.

I Graph coloring: a function C : V → [k] which maps adjacent
vertices to different values is a k-coloring.

I Want to color the graph with few colors, while using small
space.

I With n the number of vertices, can store entire graph in O(n2)
space – would like to use o(n2) space (and ideally Õ(n)).
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Motivation

I All graphs admit a (∆ + 1)-coloring, where ∆ is the maximum
degree of the graph.
I Can be obtained greedily.

I By a result of Assadi, Chen and Khanna (SODA’19) [1], can
(∆ + 1)-color in Õ(n) space with a randomized algorithm.

I Almost all graphs admit a ∆-coloring: Every connected graph
which is not a clique or an odd-cycle can be ∆-colored
(Brook’s Theorem).

I Can we find a ∆-coloring in o(n2) space?
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Our result

Theorem
There is an Õ(n7/4) space that given one pass over edges of any
graph G = (V ,E ) with maximum degree ∆, with high probability,
finds a ∆-coloring of G or outputs that G does not admit a
∆-coloring.



Preliminaries

We use the Extended HSS Decomposition from [1], which for any
ε ∈ [0, 1) decomposes a graph G (V ,E ) into:

I Sparse vertices: Neighbourhood of each sparse vertex is
missing at least ε

(∆
2

)
edges.

I A collection of almost-cliques; each almost-clique C :
I contains (1± ε)∆ vertices.
I every vertex in C has ≤ ε∆ neighbours outside C .
I every vertex in C has ≤ ε∆ non-neighbours inside C .

Can be found in a single pass using O(n/ε2) space ([1]).



Preliminaries

We use the Extended HSS Decomposition from [1], which for any
ε ∈ [0, 1) decomposes a graph G (V ,E ) into:

I Sparse vertices: Neighbourhood of each sparse vertex is
missing at least ε

(∆
2

)
edges.

I A collection of almost-cliques; each almost-clique C :
I contains (1± ε)∆ vertices.
I every vertex in C has ≤ ε∆ neighbours outside C .
I every vertex in C has ≤ ε∆ non-neighbours inside C .

Can be found in a single pass using O(n/ε2) space ([1]).



The big ideas

I Recover all edges incident on Ci (in addition to the
decomposition).

I List color (with lists of size log n
ε2 ) the vertices of V sparse

?

I Extend the partial coloring to almost cliques.
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Sparse recovery

Lemma
For any n > 0 and k ≤ n, there exists a set of m = O(k log n

k )
measurements A ∈ Fm×n

2 for recovering any k-sparse vector
x ∈ Fn

2. Moreover A chosen randomly has this property with
high-probability.

I Want to find y v (adjacency vector) for each v ∈ Ci for some i .

I y v only ∆-sparse, instead find xv = y v − zC , where zC is
characteristic vector of almost-clique C containing v
(O(ε∆)-sparse!!)

I A · y v easy to update while streaming, can compute A · zC
from decomposition at end of stream.

I Can find all edges incident on almost cliques in Õ(nε∆) space
(as opposed to O(n∆) which is trivial).
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Saving Colors on V sparse
?

I Cannot extend arbitrary ∆-coloring outside almost-cliques to
them.

I If we “save” some colors on V sparse
? , can extend (sketch later).

I We will list-color V sparse
? using (1− δ)∆ colors, where δ = ε2

100 .

Before streaming edges: for each vertex, pick list of colors
L(v) ⊂ [(1− δ)∆], with each color independently in L(v) with
probability p := α log n

3ε2(1−δ)∆
.

Lemma
With high probability, there exists a partial coloring function
C : V → [(1− δ)∆] ∪ {⊥} such that for all vertices
v ∈ V sparse

? , C(v) ∈ L(v).
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Extending the coloring to almost-cliques

This lemma is our main contribution:

Lemma
Given a partial coloring Φ of G which colors only V sparse

? using
(1− ε2/100)∆ colors, where (ε2/100)∆ > 8n/∆, and all the edges
incident on almost-cliques of G , we can find a proper ∆−coloring
of G .



Proof Sketch

Figure: Overall idea



Proof Sketch (continued)

Common Theme: in all the cases we color a rooted spanning tree
where the root has < ∆ colors in its (fully colored) neighbourhood
by either the structure of the graph, or by recoloring a vertex with
a previously saved color (inspired by Lovász’s proof of Brook’s
Theorem [2]).



Proof Sketch (continued)

Figure: Rule I. Can color almost-cliques with an edge missing inside.



Proof Sketch (continued)

Figure: Rule II. Can color almost-cliques with a vertex of degree < ∆



Proof Sketch (continued)

Figure: Rule III. Can color two cliques with two edges between them



Proof Sketch (continued)

Figure: Rule IV. 1 saved color per remaining clique with an edge to a
sparse vertex



Tying things up

I Storing edges incident on almost cliques takes Õ(nε∆) space.

I Extended HSS decomposition takes Õ(n/ε2) space.

I (1− δ)∆-coloring sparse vertices only works if ε ≥ log ∆
∆1/4 .

I Extending coloring to almost-cliques only works if ε >
√
n

∆ .

With ε = log ∆
∆1/4 , we get Õ(n7/4) algorithm.
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