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Categorical product of graphs

For two graphs F and G, we define F ×G as follows.

V (F ×G) = V (F )× V (G)

and

E(F ×G) = {(a, b)(c, d) : ac ∈ E(F ), bd ∈ E(G)}.

Observe: If c : V (F ) → [k] is a proper coloring of F , then

fc : (a, b) 7→ c(a) is a proper coloring of F × G, implying

χ(F ×G) ≤ χ(F ). Similarly, χ(F ×G) ≤ χ(G).
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Hedetniemi’s conjecture

Thus we have χ(F × G) ≤ min{χ(F ), χ(G)}, and

Hedetniemi conjectured in 1966, that in fact, for every two

finite simple graphs F and G

χ(F ×G) = min{χ(F ), χ(G)}.

It is trivial for RHS = 2, is an easy exercise for RHS = 3, a

difficult theorem (El-Zahar - Sauer 1985) for RHS = 4, open

for RHS = 5, and refuted in general very recently by Yaroslav

Shitov, arxiv.org, May 6, 2019.
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Recent progress on Hedetniemi’s conjecture

Y. Shitov: Counterexamples to Hedetniemi’s conjecture,

(arxiv, May 6, 2019) presents a family of counterexamples.

C. Tardif, X. Zhu: A note on Hedetniemi’s conjecture,

Stahl’s conjecture and the Poljak-Rödl function (arxiv, June

10, 2019) shows that the additiv gap is arbitrarily large.

X. He, Y. Wigderson: Hedetniemi’s conjecture is

asymptotically false (arxiv, June 23, 2019) shows that the

ratio of the two sides in the conjecture is asymptotically also

away from 1.
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Topological connections

H Hajiabolhassan, F Meunier: Hedetniemi’s conjecture for

Kneser hypergraphs, JCTA 2016, proves the conjecture for

topologically relevant special cases.

T. Matsushita 2019, M. Wrochna 2019 independently proves

that a consequence of Hedetniemi’s conjecture is/would have

been the following topological statement.

If n ∈ N and X,Y are Z2-spaces (finite Z2-simplicial

complexes) such that X × Y admits a Z2-map to the n-

dimensional sphere, then X or Y itself admits such a map.
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More general framework

Let p(G) be any graph parameter satisfying that

p(G) ≤ p(H) whenever G → H, i.e., when a graph

homomorphism exists from G to H.

(f : V (G)→ V (H) is a graph homomorphism if it preserves

edges.)

We have F × G → F and F × G → G (by the projection

maps), so for a p(G) as above one always has

p(F ×G) ≤ min{p(F ), p(G)}.
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It is thus natural to ask for any such parameter p(G)

whether equality holds.

Sometimes equality holds trivially, e.g., for the clique number:

We obviously have

ω(F ×G) = min{ω(F ), ω(G)}.
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Two nontrivial examples when equality holds:

Theorem (Zhu 2011) For the fractional chromatic number χf

and any two finite simple graphs F and G one has

χf(F ×G) = min{χf(F ), χf(G)}.

Theorem (Godsil, Roberson, Šamal, Severini 2016): For the

Lovász theta number of the complementary graph, ϑ̄, and any

two finite simple graphs F and G one has

ϑ̄(F ×G) = min{ϑ̄(F ), ϑ̄(G)}.
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Shannon (OR-)capacity

Def. The OR-product F · G of two graphs F and G is

defined on vertex set V (F ·G) = V (F )× V (G) with edge

set

{(f, g)(f ′, g′) : ff ′ ∈ E(F ) or gg′ ∈ E(G)}.

Denoting by Gt the t-fold OR-product of G with itself,

Shannon OR-capacity is defined as

COR(G) := lim
t→∞

t
√
ω(Gt).
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Shannon OR-capacity is also homomorphism monotone:

F → G⇒ COR(F ) ≤ COR(G).

Thus we have

COR(F ×G) ≤ min{COR(F ), COR(G)},

and it makes sense to ask whether equality holds or to ask for

what graphs it holds. (Note thatCOR(G) ≤ ϑ̄(G) ≤ χf(G),

i.e., both of our examples are well-known upper bounds on

Shannon OR-capacity.)
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Some counterevidence for equality

COR(G) does not behave ”well” for other operations.

1. Haemers (1979) showed that ∃ graphs G,H s.t.

COR(G ·H) 6= COR(G)COR(H).

This answered a question of Lovász (1979) in the negative,

who noted that COR(G ·H) ≥ COR(G)COR(H) obviously

holds.
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2. Let G ⊕ H denote the join of graphs G and H, i.e., a

vertex-disjoint copy of G and H with all the edges between

the two parts.

It was shown by Alon (1998), that ∃ graphs G and H s.t.

COR(G⊕H) 6= COR(G) + COR(H),

although equality was conjectured by Shannon (1956), who

proved that COR(G ⊕ H) ≥ COR(G) + COR(H) always

holds. The question of equality was open for more than 40

years.
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One of our main contributions is the observation that the

counterevidence presented above is rather weak. It should be

emphasized though that it may be too much to interpret this

as ”supporting evidence”.
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General upper bounds on COR(G)

Let G be a graph parameter p(G) satisfying

ω(G) ≤ p(G) and

p(F ·G) ≤ p(F )p(G) for any F and G.

Then COR(G) ≤ p(G), because

COR(G) = lim
t→∞

t
√
ω(Gt) ≤ lim

t→∞
t
√
p(Gt) ≤

lim
t→∞

t
√

[p(G)]t = p(G).
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χf and ϑ̄ are both of this type, but they have even stronger

properties:

χf(F ·G) = χf(F )χf(G),

ϑ̄(F ·G) = ϑ̄(F )ϑ̄(G).

They also satisfy

χf(F ⊕G) = χf(F ) + χf(G),

ϑ̄(F ⊕G) = ϑ̄(F ) + ϑ̄(G).
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Let X be the class of all mappings ϕ from graphs to the

nonnegative real numbers that satisfy

1. ϕ(K1) = 1

2. ϕ(F ⊕G) = ϕ(F ) + ϕ(G)

3. ϕ(F ·G) = ϕ(F )ϕ(G)

4. F → G⇒ ϕ(F ) ≤ ϕ(G).

X is called the asymptotic spectrum of graphs. Using

Strassen’s theory of asymptotic spectra, Zuiddam (2018+)

obtained a surprising characterization of Shannon capacity.
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Zuiddam’s recent result

Note that ϕ(K1) = 1 and ϕ(F⊕G) = ϕ(F )+ϕ(G) implies

ϕ(Kn) = n. Thus for any ϕ ∈ X : COR(G) ≤ ϕ(G).

At the same time COR(G) /∈ X by the mentioned results of

Haemers (1979) and Alon (1998).

Theorem (Zuiddam 2018):

COR(G) = min
ϕ∈X

ϕ(G).
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Known elements of X.

Zuiddam lists four types of elements of X:

Two of them are χf and ϑ̄, one is called fractional orthogonal

rank and the fourth one is the so-called fractional Haemers

bound (introduced by Anna Blasiak (2013)) that also depends

on a chosen field thus providing infinitely many examples. (A

result of Bukh and Cox (2019) shows that they are different,

indeed, in an essential sense.)

It would be interesting to know whether these other parameters

also satisfy a Hedetniemi type equality as χf and ϑ̄ do.
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Theorem:

Either ∃ϕ ∈ X for which there are graphs F and G s.t.

ϕ(F ×G) 6= min{ϕ(F ), ϕ(G)},

or we also have

COR(F ×G) = min{COR(F ), COR(G)}

for every F and G.
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The proof is a straightforward consequence of Zuiddam’s

theorem:

COR(F ×G) = ϕ(F ×G)

for some ϕ ∈ X. However, by ϕ ∈ X we have

min{COR(F ), COR(G)} ≤ min{ϕ(F ), ϕ(G)},

so if ϕ(F × G) = min{ϕ(F ), ϕ(G)}, then it also

implies COR(F ×G) ≥ min{COR(F ), COR(G)}, while the

opposite inequality also holds. �
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Test cases?

For two graphs T and Z, let TZ ⊆ T be a subgraph of T

admitting a homomorphism to Z and having maximum value

of Shannon OR-capacity among all those subgraphs.

Proposition:

COR(F ×G) ≥ max{COR(FG), COR(GF )}.

Finding examples of graphs where the above lower

bound is strictly smaller than the upper bound

min{COR(F ), COR(G)} is already a challenge.
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Ramsey graphs might provide candidates

Erdős-McEliece-Taylor (1971) proved (rediscovered by Alon

and Orlitsky (1995)) that

max{ω(Gt) : ω(G) < k} = R(k, . . . , k)− 1,

where k appears t times in the brackets of RHS and

R(., . . . , .) is the usual Ramsey number.

This implies

max{COR(G) : ω(G) < k} = lim sup
t→∞

t
√
R(k, . . . , k).
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In particular,

max
K3*G

{COR(G)} = lim sup
t→∞

t
√
R(3, . . . , 3).

(Whether the RHS here is finite is a famous Erdős problem.)

If G is triangle-free, then K3 9 G. The Ramsey graph for

R(3, 3) = 6 is C5, and C5 → K3. Thus this does not

provide a test case, as by C2 max{r,`}+1→ C2 min{r,`}+1:

COR(C2r+1×C2`+1) = min{COR(C2r+1), COR(C2`+1)}.
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However, the Ramsey graph for R(3, 3, 3) = 17, the so-

called Clebsch graph B16 on 16 points is not 3-chromatic, i.e.,

B16 9 K3. Therefore (B16)K3 ( B16.

A further difficulty is that COR(B16) is not known. We

only know

3
√

16 ≤ COR(B16) ≤ θ̄(B16) = 8/3.

Yet, it might shed some light on our question if we knew

whether

COR(B16 ×K3) ≥
3
√

16.
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To prove at least that there are graph pairs where our easy

lower and upper bounds on COR(F × G) do not coincide an

affirmative answer to the following question would be enough:

Question: Is it true that if G is K3 -free and χ(G) = 3, then

θ̄(G) < 3?

Since lim supt→∞R(3, . . . , 3) > 3.1717 > 3 is known by

a result of Exoo (1994), a K3-free graph G with COR(G) > 3

exists. An affirmative answer to the above question would mean

that for this G we have COR(GK3) < 3, and thus our upper

and lower bounds would differ for COR(G×K3).
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Remark: ∃G s.t. it is K3 -free and χf(G) = χ(G) = 3,

so we cannot change θ̄ to χf in the previous argument.

Example: V (G) := {0, 1}3 ∪ {a, b, c, d} and let

G[{0, 1}3] ∼= 1−skeleton of the cube while a, b, c, d each

connect to a different antipodal pair of {0, 1}3 and we also

have the edges ab and cd. Then

|V (G)| = 12, α(G) = 4, χ(G) = χf(G) = 3.
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Another candidate

Let F = K4 and G = H17 be the well-known Ramsey graph

on 17 vertices containing no clique or independent set of size

4.

Known: COR(H17) =
√

17 (by results of Lovász) and

COR(K4) = 4, thus min{COR(K4), COR(H17)} = 4.

We also have FG = K3 and G 6→ F in this case. In fact,

|V (GF )| ≤ 12, and if COR(GF ) < 4 were true, then our

lower bound would be strictly smaller than the upper bound.
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So answering the question

COR(H17 ×K4) = 4?

might shed some light on our problem.
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Open questions summarized

Q1 : ∃G,H : COR(G×H) < min{COR(G), COR(H)}?

Q2:

∃ϕ ∈ X and graphsG,H ϕ(G×H) < min{ϕ(G), ϕ(H)}?

We have seen that we cannot have a positive answer to Q1

without a positive answer to Q2.

What is the answer to Q2 if ϕ is the fractional Haemers bound?

28



Q3: Give two graphs G,H satisfying

max{COR(FG), COR(GF )} < min{COR(G), COR(H)}.

Q4: In particular, if F is a 4-chromatic subgraph of H17 with

largest COR(F ) value, is then COR(F ) < 4?

Q5:

max{θ̄(G) : ω(G) = 2, χ(G) = 3} =?

In particular, is it strictly less than 3?

Q6: Is

COR(H17 ×K4) = 4?
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Q7: Is

COR(B16 ×K3) ≥
3
√

16?

Q8: Is at least

COR(G×Kn) = min{COR(G), n}

true for all graphs G and positive integers n? Is it true for

n = 3?

30


