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Independent sets

A set T of vertices in a graph G is independent if no edge of GG joins two
vertices of T.

Aim: To see how topological notions can help us
understand the independent sets in a graph.



Simplicial complexes

An abstract simplicial complex is a family X of sets (called simplices)
such that if B is a subset of A € Y then B isin X.

The dimension of X is d where d+ 1 is the largest size of a simplex in .

The independence complex Z(G) of a graph G is the abstract simplicial
complex consisting of all independent sets of vertices in G.

NASTY simplicial complex!



Independent transversals

Let G be a graph with a fixed partition of its vertex set.

An independent transversal in G is a subset 7" of vertices such that

e /' is independent,

e '/’ contains exactly one vertex from each partition class
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Independent Transversals

Many combinatorial problems can be formulated by asking whether
a given graph with a given vertex partition has an independent

transversal. For example, the SAT problem:
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Simplicial complexes

A geometric simplicial complex is a family A of simplices in real space
such that

o if risafaceof c € Athenrisin A, and

e the intersection of any two simplices in A is a face of both.




Simplicial complexes

Thus the family of vertex sets of the simplices in a geometric simplicial
complex is an abstract simplicial complex.

Conversely, every abstract simplicial complex has a geometric
realization.



Geometric simplicial complexes

A triangulated n-simplex is a geometric simplicial complex.
NICE simplicial complex!
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When does an independent transversal exist?

AR
7/
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\ TRANSVERSAL

If we view the partition classes as for the vertices, then an
iIndependent transversal is the same as a multicoloured simplex in the
simplicial complex Z(G).

NASTY simplicial complex!
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Sperner’s Lemma

Let T" be a iriangulation of the n-dimensional simplex. Suppose the
points of T" are coloured with a Sperner colouring.

Then there exists a multicoloured elementary simplex in this colouring.

12
























Can we transfer the problem of finding a multicoloured simplex in
the independence complex of a graph to that of finding a multicoloured
simplex in a triangulation of the simplex?
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Can we transfer the problem of finding a multicoloured simplex in
the independence complex of a graph to that of finding a multicoloured
simplex in a triangulation of the simplex?

YES!
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Can we transfer the problem of finding a multicoloured simplex in
the independence complex of a graph to that of finding a multicoloured
simplex in a triangulation of the simplex?

YES!

How?
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Can we transfer the problem of finding a multicoloured simplex in

the independence complex of a graph to that of finding a multicoloured
simplex in a triangulation of the simplex?

YES!
How?

Using topological connectedness.
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How to find an independent transversal?

Let G be a graph with vertex partition Uy,...,U,,. Suppose we can
construct a triangulation 7" of the (m — 1)-dimensional simplex, and a
simplicial map f from 7' to Z(G) such that the induced colouring on T' is
a Sperner colouring.

A simplicial map f from a simplicial complex A to a simplicial complex
Y is afunction f : V(A) — V(X) such that

f(r) =4f(w):w e V(r)}is a simplex of ¥ for each simplex = of A.

Then T contains a multicoloured simplex, which gives an independent
transversal in G.

Q: What conditions will guarantee such a simplicial map exists?
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Topological connectedness

A topological space X is said to be k-connected if
e foreach —1 < d <k, and
e for each continuous map f from the d-sphere S% to X

there exists a continuous map f’ from the (d + 1)-ball B! to X that
extends f.

In particular —1-connected means nonempty.
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Connectedness vs connectivity
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Topological 0-connectedness corresponds to connected in a graph.
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Connectedness
If the simplicial complex X is k-connected then

e foreach —1 < d <k,
e for each triangulation T" of the boundary of a (d + 1)-simplex, and

e for each simplicial map f from T to %,

the triangulation T' can be extended to a triangulation 1" of the whole
(d+ 1)-simplex, and f can be extended to a simplicial map f’ from 7" to
>
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Independent Transversals

THEOREM: Let G be a graph with vertex
partition Uy, ...,U,,. Suppose that for each S C [m], the subcomplex
1(Gg) of independent sets in Gs = G| J,cq Uil is (|S] — 2)-connected.

AR

Then G has an independent transversal with respect to the vertex
partition Uy, ..., U,,.
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Proof:

Build up a suitable triangulation T' of the (m — 1)-dimensional simplex,
and a suitable simplicial map from T to Z(G), starting with the O-
dimensional faces and proceeding face by face in order of dimension.
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Then theory about topological connectedness helps obtain lower
bounds on the connectedness of the Z(G), if we know certain special
properties about the graph G and its vertex partition.

Q: What properties of a graph influence the topolgical connectedness
of its independence complex?

Several properties involving domination in G turn out to be related to the
connectedness of Z(Gg).

Here we will focus on the case in which & is the line graph of a
hypergraph, to obtain results on hypergraph matching.
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Matching in bipartite hypergraphs
def: A bipartite 3-uniform hypergraph:

A X
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def: A complete hypermatching:
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def: The neighbourhood (link) I'(S) of a subset S of A:

A X
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neighbourhood of S
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Formulated in terms of independent transversals

Given a bipartite hypergraph 7 with vertex classes A and X, define the
graph G to be the line graph of I'(A).

The partition classes are determined by the elements of A: we put e €
V(@) into the class corresponding to a € A precisely wheneU{a} € J.

Then the independent transversals in G correspond precisely to the
complete hypergraph matchings in 7.
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Hall’s Theorem for r-uniform hypergraphs

THEOREM: The bipartite r-uniform hypergraph J has a
complete matching if: For every subset S C A, the (r — 1)-uniform

hypergraph T'(S) has a matching that has size at least
(r—1)(]S|—1)+ 1.
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Hall's Theorem for hypergraphs follows from

Fact. If a graph G contains an independent set that is not totally
dominated by a set of at most ¢ + 1 vertices of G, then Z(G) is t-
connected.

This Fact is applied to the partitioned line graph G of I'(A). In particular
If a hypergraph contains a large matching then it is hard to dominate.
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Ryser’s Contject,ure
A cover of the hypergraph H is a set of vertices C' of H such that every

edge of H contains a vertex of C. The parameter 7(#) is defined to be
the minimum size of a cover of H. We denote by v(#) the maximum
size of a matching in H.

Note that for every r-uniform hypergraph H we have 7(H) < rv(H).

Ryser’s Conjecture: Let H be an r-partite r-uniform hypergraph. Then

T(H) < (r = 1v(H).
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THEOREM
Then

The proof uses

Ryser’s Conjecture

Let H be a 3-partite 3-uniform hypergraph.
7(H) < 2v(H).

Hall's Theorem for Hypergraphs.
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Proof Idea
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Let H be a 3-partite 3-uniform hypergraph. Then every subset S of
A gives a cover of H of size |A| — |S| + 7(Gg).

Here G is the (bipartite) multigraph of pairs bc such that abc € H for
somea € S.
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By Konig’'s Theorem 7(Gs) = v(Gyg), SO

T(H) < |A] = [S] 4+ v(Gs).

Therefore for every S C A we find

v(Gs) = |S] = Al + 7(H).
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Extremal hypergraphs for Ryser’s Conjecture

THEOREM Let H be a 3-partite 3-uniform
hypergraph. Suppose
T(H) = 2v(H).

Then H is a home base hypergraph.

The proof involves a characterisation of bipartite graphs for which
the connectedness of the independence complex of their line graphs is
as small as possible with respect to their matching number.
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Stability for matchings in regular hypergraphs
THEOREM: Let » > 0 be given. Every r-regular 3-partite 3-uniform

(multi)hypergraph, with n vertices in each class, has a matching of size
at least n /2.

This is easily implied by Aharoni’'s Theorem. It is best possible for all
even r and all even n: for an example take n/2 disjoint copies of % - I
((r/2) multiples of the hypergraph F)).

THEOREM . Let H be an r-regular 3-partite 3-uniform
(multi)hypergraph with » vertices in each class, with v(H) < (1 + ¢)5.

Then H has at least
(1 _ <22r _ H) s> i
3 2

components that are copies of 5 - F'.
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Open Problems

e The last theorem implies that if the r-regular 3-partite 3-uniform
(multi)hypergraph with n vertices in each class contains no copy of

g-Fthen
1 n
> |1 —.
V(H)( +227“77> 5

3

This is close to being best possible, since examples exist with
v(H) < (14 1) Z. Itis natural to conjecture that this is the right value.

e It is believed that much stronger bounds should hold if H is simple,
l.e. does not have multiple edges. There exist simple r-regular 3-
partite 3-uniform hypergraphs H for which v(H) = 27” and this could
be the correct bound.
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e More generally, Alon and Kim conjectured that the edges of every
simple 3-uniform hypergraph with maximum degree r can be
partitioned into (£ + o(1))r matchings.

e No stability result for Ryser’s Conjecture for 3-partite 3-uniform
hypergraphs is currently known.

e Ryser’'s Conjecture is still wide open for all » > 4. For » > 6 no
nontrivial bound is known.
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