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Independent sets
A set T of vertices in a graph G is independent if no edge of G joins two
vertices of T .

Aim: To see how topological notions can (sometimes!) help us
understand the independent sets in a graph.
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Simplicial complexes
An abstract simplicial complex is a family Σ of sets (called simplices)
such that if B is a subset of A ∈ Σ then B is in Σ. i.e. a “downward-
closed hypergraph”.

The dimension of Σ is d where d+ 1 is the largest size of a simplex in Σ.

The independence complex I(G) of a graph G is the abstract simplicial
complex consisting of all independent sets of vertices in G.

NASTY simplicial complex!
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Independent transversals

Let G be a graph with a fixed partition of its vertex set.

An independent transversal in G is a subset T of vertices such that

• T is independent,

• T contains exactly one vertex from each partition class (transversal)
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Independent Transversals
Many combinatorial problems can be formulated by asking whether
a given graph with a given vertex partition has an independent
transversal. For example, the SAT problem:

(x1 ∨ x̄4 ∨ x7) ∧ (x̄1 ∨ x̄3 ∨ x2) ∧ (x3 ∨ x̄2) ∧ (x5 ∨ x6 ∨ x̄2)
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Simplicial complexes

A geometric simplicial complex is a family ∆ of simplices in real space
such that

• if τ is a face of σ ∈ ∆ then τ is in ∆, and

• the intersection of any two simplices in ∆ is a face of both.
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Simplicial complexes

Thus the family of vertex sets of the simplices in a geometric simplicial
complex is an abstract simplicial complex.

Conversely, every abstract simplicial complex has a geometric
realization.
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Geometric simplicial complexes

A triangulated n-simplex is a geometric simplicial complex.

NICE simplicial complex!

10



When does an independent transversal exist?
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If we view the partition classes as colours for the vertices, then an
independent transversal is the same as a multicoloured simplex in the
simplicial complex I(G).

NASTY simplicial complex!
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Sperner’s Lemma

Let T be a triangulation of the n-dimensional simplex. Suppose the
points of T are coloured with a Sperner colouring.

Then there exists a multicoloured elementary simplex in this colouring.
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Q: Can we transfer the problem of finding a multicoloured simplex in
the independence complex of a graph to that of finding a multicoloured
simplex in a triangulation of the simplex?
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Q: Can we transfer the problem of finding a multicoloured simplex in
the independence complex of a graph to that of finding a multicoloured
simplex in a triangulation of the simplex?

A: YES!
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Q: Can we transfer the problem of finding a multicoloured simplex in
the independence complex of a graph to that of finding a multicoloured
simplex in a triangulation of the simplex?

A: YES!

How?

22



Q: Can we transfer the problem of finding a multicoloured simplex in
the independence complex of a graph to that of finding a multicoloured
simplex in a triangulation of the simplex?

A: YES!

How?

Using topological connectedness.
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How to find an independent transversal?
Let G be a graph with vertex partition U1, . . . , Um. Suppose we can
construct a triangulation T of the (m − 1)-dimensional simplex, and a
simplicial map f from T to I(G) such that the induced colouring on T is
a Sperner colouring.

A simplicial map f from a simplicial complex ∆ to a simplicial complex
Σ is a function f : V (∆)→ V (Σ) such that

f(τ) = {f(w) : w ∈ V (τ)} is a simplex of Σ for each simplex τ of ∆.

Then T contains a multicoloured simplex, which gives an independent
transversal in G.

Q: What conditions will guarantee such a simplicial map exists?
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Topological connectedness
A topological space X is said to be k-connected if

• for each −1 ≤ d ≤ k, and

• for each continuous map f from the d-sphere Sd to X

there exists a continuous map f ′ from the (d + 1)-ball Bd+1 to X that
extends f .

i.e. “there are no holes up to dimension k”.

In particular −1-connected means nonempty.
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Connectedness vs connectivity

S
0

Topological 0-connectedness corresponds to connected in a graph.
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Connectedness
If the simplicial complex Σ is k-connected then

• for each −1 ≤ d ≤ k,

• for each triangulation T of the boundary of a (d+ 1)-simplex, and

• for each simplicial map f from T to Σ,

the triangulation T can be extended to a triangulation T ′ of the whole
(d+ 1)-simplex, and f can be extended to a simplicial map f ′ from T ′ to
Σ.

View Σ as a topological space via its geometric realization, OR just use
the above as definition.
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Independent Transversals

THEOREM:(Aharoni-H, Aharoni-Berger) Let G be a graph with vertex
partition U1, . . . , Um. Suppose that for each S ⊆ [m], the subcomplex
I(GS) of independent sets in GS = G[

⋃
i∈S Ui] is (|S| − 2)-connected.
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Then G has an independent transversal with respect to the vertex
partition U1, . . . , Um.
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Proof:

Build up a suitable triangulation T of the (m − 1)-dimensional simplex,
and a suitable simplicial map from T to I(G), starting with the 0-
dimensional faces and proceeding face by face in order of dimension.
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Then theory about topological connectedness helps obtain lower
bounds on the connectedness of the I(GS), if we know certain special
properties about the graph G and its vertex partition.

Q: What properties of a graph influence the topolgical connectedness
of its independence complex?

Several properties involving domination in G turn out to be related to the
connectedness of I(GS).

Here we will focus on the case in which G is the line graph of a
hypergraph, to obtain results on hypergraph matching.
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Matching in bipartite hypergraphs
def: A bipartite 3-uniform hypergraph:

A X
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def: A complete hypermatching:

A X
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def: The neighbourhood (link) Γ(S) of a subset S of A:

A X

S
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neighbourhood of S
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Formulated in terms of independent transversals

Given a bipartite hypergraph J with vertex classes A and X, define the
graph G to be the line graph of Γ(A).

The partition classes are determined by the elements of A: we put e ∈
V (G) into the class corresponding to a ∈ A precisely when e∪{a} ∈ J .

Then the independent transversals in G correspond precisely to the
complete hypergraph matchings in J .
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Hall’s Theorem for r-uniform hypergraphs
THEOREM:(Aharoni-H) The bipartite r-uniform hypergraph J has a
complete matching if: For every subset S ⊆ A, the (r − 1)-uniform
neighbourhood hypergraph Γ(S) has a matching that has size at least
(r − 1)(|S| − 1) + 1.

A X

S
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Hall’s Theorem for hypergraphs follows from

Fact. If a graph G contains an independent set that is not totally
dominated by a set of at most t + 1 vertices of G, then I(G) is t-
connected.

This Fact is applied to the partitioned line graph G of Γ(A). In particular
if a hypergraph contains a large matching then it is hard to dominate.
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Ryser’s Conjecture
A cover of the hypergraph H is a set of vertices C of H such that every
edge of H contains a vertex of C. The parameter τ(H) is defined to be
the minimum size of a cover of H. We denote by ν(H) the maximum
size of a matching in H.

Note that for every r-uniform hypergraph H we have τ(H) ≤ rν(H).

Ryser’s Conjecture: Let H be an r-partite r-uniform hypergraph. Then

τ(H) ≤ (r − 1)ν(H).
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Ryser’s Conjecture

THEOREM (Aharoni 2001): Let H be a 3-partite 3-uniform hypergraph.
Then

τ(H) ≤ 2ν(H).

The proof uses a defect version of Hall’s Theorem for Hypergraphs.
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Proof Idea

A B C

S

Let H be a 3-partite 3-uniform hypergraph. Then every subset S of
A gives a cover of H of size |A| − |S|+ τ(GS).

Here GS is the (bipartite) multigraph of pairs bc such that abc ∈ H for
some a ∈ S.
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A B C

S

By König’s Theorem τ(GS) = ν(GS), so

τ(H) ≤ |A| − |S|+ ν(GS).

Therefore for every S ⊆ A we find

ν(GS) ≥ |S| − |A|+ τ(H).
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Extremal hypergraphs for Ryser’s Conjecture

THEOREM (H, Narins, Szabó 2018): Let H be a 3-partite 3-uniform
hypergraph. Suppose

τ(H) = 2ν(H).

Then H is a home base hypergraph.

The proof involves a characterisation of bipartite graphs for which
the connectedness of the independence complex of their line graphs is
as small as possible with respect to their matching number.
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Stability for matchings in regular hypergraphs
THEOREM: Let r > 0 be given. Every r-regular 3-partite 3-uniform
(multi)hypergraph, with n vertices in each class, has a matching of size
at least n/2.

This is easily implied by Aharoni’s Theorem. It is best possible for all
even r and all even n: for an example take n/2 disjoint copies of r

2 · F
((r/2) multiples of the hypergraph F ).

THEOREM (H, Narins 2018): Let H be an r-regular 3-partite 3-uniform
(multi)hypergraph with n vertices in each class, with ν(H) ≤ (1 + ε)n2 .
Then H has at least (

1−
(

22r − 77

3

)
ε

)
n

2

components that are copies of r
2 · F .
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Open Problems

• The last theorem implies that if the r-regular 3-partite 3-uniform
(multi)hypergraph with n vertices in each class contains no copy of
r
2 · F then

ν(H) ≥

(
1 +

1

22r − 77
3

)
n

2
.

This is close to being best possible, since examples exist with
ν(H) ≤

(
1 + 1

r

)
n
2 . It is natural to conjecture that this is the right value.

• It is believed that much stronger bounds should hold if H is simple,
i.e. does not have multiple edges. There exist simple r-regular 3-
partite 3-uniform hypergraphs H for which ν(H) = 2n

3 , and this could
be the correct bound. A lower bound of 3

5 for the r = 3 case was
proved by Cavenaugh, Kuhl and Wanless.
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• More generally, Alon and Kim conjectured that the edges of every
simple 3-uniform hypergraph with maximum degree r can be
partitioned into (32 + o(1))r matchings.

• No stability result for Ryser’s Conjecture for 3-partite 3-uniform
hypergraphs is currently known.

• Ryser’s Conjecture is still wide open for all r ≥ 4. For r ≥ 6 no
nontrivial bound is known.
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