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A theorem on the existence of a rainbow matchings

In this presentation, we identify a graph G with its edge set
E (G ).

Theorem

Let E1, . . . ,E3k−2 be sets of edges in an arbitrary graph such
that

ν(Ei ∪ Ej) ≥ k for every i 6= j .

Then, there exists a rainbow matching of size k.

In [ABCHS, 2018], the existence of a rainbow matching of
size k is proved for Ei satisfying ν(Ei ) ≥ k for every
1 ≤ i ≤ 3k − 2.

In [AHJ, 2018], analogue results on fractional matchings
are proved in hypergraph setting.
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Topological theorems

A simplicial complex K is called near-d-Leray if

H̃i (lkK (σ)) = 0 for every ∅ 6= σ ∈ K and i ≥ d .

Theorem

NMk(H) := {G ⊆ H : ν(G ) < k} is near-(3k − 4)-Leray.

Theorem (Holmsen, 2016)

Let K be a near-d -Leray simplicial complex, and (M, ρ) be a
matroidal complex of dimension > d on the same V . If
M ≤ K, then there exists σ ∈ K such that ρ(V \ σ) ≤ d.

If the near-d-Leray condition is changed to d-Leray and the
dimension condition on M is deleted, then it becomes the
theorem of Kalai and Meshulam [KM, 2005].
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Proof of the existence of the rainbow matching

Theorem (Holmsen, 2016)

Let K be a near-d-Leray simplicial complex, and (M, ρ) be a
matroidal complex of dimension > d on the same V . If
M ≤ K, then there exists σ ∈ K such that ρ(V \ σ) ≤ d.

Ẽi := {(e, i) : e ∈ Ei}, Ẽ :=
⋃

i∈[3k−2] Ẽi , and

K := {Ẽ ′ ⊆ Ẽ : ν({e : ∃i s.t. (e, i) ∈ Ẽ ′}) < k}.

Proof sketch.

Let d = 3k − 4 and let M be a partition matroid given by the
Ẽi (⇒ dimM = (3k − 2)− 1 = 3k − 3 > d). Suppose the
contrary. Then M ≤ K . Since NMk(

⋃3k−2
i=1 Ei ) is near-d-Leray,

K is also near-d-Leray (∵ lkK (σ) for ∅ 6= σ ∈ K is a star or ' a
link in NMk(

⋃
Ei )). By Holmsen’s theorem, there is an edge

set σ ∈ K (ν(σ) < k) which contains some Ẽi ∪ Ẽj . ⇒⇐
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Hereditary property of the near-d-Leray property

Theorem (Restatement)

NMk(H) := {G ⊆ H : ν(G ) < k} is near-(3k − 4)-Leray.

Near-d-Leray property is hereditary: If L is an induced
subcomplex of K and K is near-d-Leray, then L is also
near-d-Leray.

Theorem

NMk(Kn) is near-(3k − 4)-Leray.

In [LSW, 2004], it is shown that NMk(Kn) is homotopy
equivalent to a wedge of (3k − 4)-spheres using the
discrete Morse theory. We follow and generalize their
proof arguments.
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The main theorem of Discrete Morse theory

Let K be a simplicial complex, and P = F(K ).

D(P) is the directed graph obtained by directing each
edge in the Hasse diagram of P downwards.

For a matching M in D(P), let DM(P) be the directed
graph obtained by reversing direction of each edge of M
in D(P). If DM(P) does not contain a directed cycle,
then M is called a Morse matching of P.

Faces of K not covered by M are called critical cells.

Theorem (Forman)

If there is a Morse matching of a face poset of K with ci i -dim
critical cells for each i , then K ' K ′ where K ′ is a
CW-complex with ci i -dim faces for each i .
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Upper bound on the size of critical cells and the
near-d-Leray property

Theorem

Given a subgraph H of Kn with ν(H) < k, the poset
{G ⊆ Kn : H ⊆ G , ν(G ) < k} has a Morse matching whose
critical cells have size ≤ 3k − 4 + |H|.

Theorem (Restatement)

For every nonempty face H of NMk(Kn),

H̃i (lkNMk (Kn)(H)) = 0 for every i ≥ 3k − 4.

Here, NMk(Kn) := {G ⊆ Kn : ν(G ) < k}.

Proof.

lkNMk (Kn)(H) has a Morse matching whose critical cells have
size ≤ 3k − 4 (⇒ dimension ≤ 3k − 5).
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The Gallai-Edmonds decomposition

For G = (V ,E ), the Gallai-Edmonds decomposition of G is

D = D(G ) := {v ∈ V :
∃ maximum matching of G not covering v},
A = A(G ) := {v ∈ V \ D : NG (v) ∩ D 6= ∅}, and

C = C (G ) := V \ (A ∪ D).

Theorem (Gallai-Edmonds structure theorem)

1 Every odd component H of G − A is factor-critical (i.e.
∀v ∈ V (H) H− v has a perfect matching) and V (H) ⊆ D.

2 Every even component H of G − A has a perfect matching
and V (H) ⊆ C.

14 / 38



Near-(3k−4)-
property of

the complex of
graphs G with
ν(G) < k

Seunghun Lee

Connection of
the near-d-
Lerayness to
the existence
of a rainbow
matching

Tools

The discrete
Morse theory

The
Gallai-Edmonds
decomposition

Proof of the
main theorem

Some
questions

The Gallai-Edmonds decomposition

For G = (V ,E ), the Gallai-Edmonds decomposition of G is

D = D(G ) := {v ∈ V :
∃ maximum matching of G not covering v},
A = A(G ) := {v ∈ V \ D : NG (v) ∩ D 6= ∅}, and

C = C (G ) := V \ (A ∪ D).

Theorem (Gallai-Edmonds structure theorem, continued)

3 ∀A′ ⊆ A, NG (A′) intersects > |A′| components of G [D].

4 If con(G ) is the number of connected components of
G [D], then

con(G ) = |A|+ |V | − 2ν(G ).
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The Gallai-Edmonds decomposition

D1 D2 D3 D4

A

C

A-factor-critical

π

A bipartite graph G on D̃ ∪ A is A-factor-critical if for
every v ∈ D̃, G − v has a matching covering A.

∀A′ ⊆ A(G ), N(A′) intersects > |A′| components of G [D].
⇔ π(G [D,A]) is A-factor-critical.
(G [D,A] is the set of edges in G between D and A.)
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The Gallai-Edmonds decomposition

D1 D2 D3 D4

A

C

A-factor-critical

π

A maximum matching uses all vertices in A ∪ C but misses
some in D =

⋃
Di .
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Step 0: Constructing Morse matchings for each
missing edge of H incident with vn

Find a vertex vn such that there exists a missing edge of H
incident with vn, and an edge of H not incident with vn
(assume NH(vn) = {vm+1, vm+2, . . . , vn−1}).

While j ranging from 1 to m, define

M(j) := {(G ,G − vjvn) : vjvn ∈ G ,G ∈ C(j−1)},

where C(0) := {G ⊆ Kn : H ⊆ G , ν(G ) < k} and C(j) is
the subposet of graphs which are not covered by earlier
matchings M(j).

M(j) is the poset of graphs covered by M(j).

For G1 ∈M(j) and G2 ∈ C(j), either G1 ⊆ G2, or G1 and
G2 are not comparable. ⇒ One can define a partial order
in {M(j), C(j)}.
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Step 0: Using the cluster lemma and the cycle
lemma

Lemma (Cluster lemma)

Let P1, . . . ,Pr be pairwise disjoint, order convex subposets of
P. For each i ∈ [r ], let Mi be a Morse matching on Pi . Define
a relation on the Pi by Pi ≤c Pj if there exist x ∈ Pi and
y ∈ Pj such that x ≤ y. If ≤c is a partial order, then⋃

i∈[r ]Mi is a Morse matching on P.
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Step 0: Using the cluster lemma and the cycle
lemma

Lemma (Cycle lemma)

Let P be an order convex subposet of F(K ) where K is a
simplicial complex, and M be a matching of D(P). Then every
directed cycle in DM(P) is of the form
σ1, τ1, . . . , σr , τr , σr+1 = σ1 for some r ≥ 2, where

1 ∀i ∈ [r ] ∃xi ∈ τi s.t. τi = σi ∪ {xi} and (τi , σi ) ∈M.

2 ∀i ∈ [r ] ∃yi ∈ τi s.t. τi = σi+1 ∪ {yi} and (τi , σi ) ∈M.

3 {xi : i ∈ [r ]} = {yi : i ∈ [r ]} as multisets.

τ1 τ2 τ3 τr

σ1 σ2 σ3 σr

+x1

−y1

+x2

−y2

+x3
−y3

+xr

−yr−1

−yr
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v1

v2

v3

v4

v5

C(0)

m = 3, n = 5
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M(1) (G,G− v1v5)

C(1)
v1

v2

v3

v4

v5

m = 3, n = 5
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M(1) (G,G− v1v5)

v1

v2

v3

v4
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Step 1: Partitioning into possible Gallai-Edmonds
decompositions (D1, . . . ,Dc ;A;C )

The remaining graphs in C(m) are exactly graphs G such that
for every j ∈ [m]

1 vjvn /∈ G , and

2 ν(G + vjvn) = k (⇒ ν(G − vn) = k − 1).

A Gallai-Edmonds decomposition of G − vn is of the form
(D ={v1, . . . , vm},A,C ).
We partition C(m) into subposets of graphs sharing the same
Gallai-Edmonds decomposition (D,A,C ), and also the same
partition of D into vertex sets D1, . . . ,Dc of connected
components on D.

Proposition

Let G1 ⊆ G2 be graphs with the same matching number and on
the same vertex set. Then, D(G1) ⊆ D(G2) and
D(G1) ∪ A(G1) ⊆ D(G2) ∪ A(G2).
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Step 1: Partitioning into possible Gallai-Edmonds
decompositions (D1, . . . ,Dc ;A;C )

Assume that we have found a Morse matching for each
subposet of graphs having the same Gallai-Edmonds
decomposition. If there is a directed cycle after combining
those Morse matchings, it should look like:

τ1 τ2 τ3 τr

σ1 σ2 σ3 σr

+x1

−y1

+x2

−y2

+x3
−y3

+xr

−yr−1

−yr

D(σ1) = D(τ1) ⊇ D(σ2) = D(τ2) ⊇ · · · ⊇ D(τr ) ⊇ D(σ1).

A(σ1) = A(τ1) ⊇ A(σ2) = A(τ2) ⊇ · · · ⊇ A(τr ) ⊇ A(σ1).

Vertices of each component Dj of D should be the same.

Contradiction!
27 / 38
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Step 2: Find a Morse matching for each
Gallai-Edmonds decomposition

D1 D2 D3 D4

A

C PM(C)

Use pairs (G + e,G ) when there is a missing edge e of H
between vertices of A, or between a vertex of A and another of
C .
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Step 2: Find a Morse matching for each
Gallai-Edmonds decomposition

D1 D2 D3 D4

A

C

⊆ H

PM(C)

We assume that all such edges are in H.
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Step 2: Find a Morse matching for each
Gallai-Edmonds decomposition

D1 D2 D3 D4

A

C

⊆ H

FC(D1) FC(D2) FC(D3) FC(D4)

BF([con(D)], A;π(H))

π

PM(C)

P1 × P2 := {σ ∪ τ : σ ∈ P1, τ ∈ P2}.
P = FC(D1)×FC(D2)×FC(D3)×FC(D4)×BF×PM(C )

By Product lemma, we can (later) combine Morse matchings
for each poset in the product, whose critical cells are the union
of critical cells for each poset.
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Step 2: Find a Morse matching for each
Gallai-Edmonds decomposition

D1 D2 D3 D4

A

C

FC(D1) FC(D2) FC(D3) FC(D4)

PM(C)

≤∑
j∈[con(D)]

3
2 (|Dj | − 1) + max(0, |H[Dj ]| − 1)
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Step 2: Find a Morse matching for each
Gallai-Edmonds decomposition

D1 D2 D3 D4

A

C

BF([con(D)], A;π(H))

π

PM(C)

≤ 2|A|+max(|π(H)| − 1, 0)

≤ 2|A|+max(|H| − 1, 0)

We use Identification lemma to obtain a Morse matching M
from the Morse matching Mπ of the image. A critical cell G of
M has almost same size with π(G ) (which is a critical cell of
Mπ) except H-part, that is,

|G | = |π(G )| − |π(H)|+ |H|.
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Step 2: Find a Morse matching for each
Gallai-Edmonds decomposition

D1 D2 D3 D4

A

C PM(C)
≤ 3

2 |C| − 2 + max(|H[C]| − 1, 0)
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Step 2: Find a Morse matching for each
Gallai-Edmonds decomposition

D1 D2 D3 D4

A

C

⊆ H

FC(D1) FC(D2) FC(D3) FC(D4)

BF([con(D)], A;π(H))

π

PM(C)

≤∑
j∈[con(D)]

3
2 (|Dj | − 1) + max(0, |H[Dj ]| − 1)

≤ 2|A|+max(|π(H)| − 1, 0)

≤ 2|A|+max(|H| − 1, 0)

≤ 3
2 |C| − 2 + max(|H[C]| − 1, 0)

We use H[W ] for max(|H[W ]| − 1, 0) when A ∪ C 6= ∅.
When A ∪ C = ∅, there is Dj where max(|H[Dj ]| − 1, 0) = |H[Dj ]| − 1.
⇒ ≤ 3k − 4 + |H[[n− 1]]|.
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Outline for section 4

1 Connection of the near-d-Lerayness to the existence of a
rainbow matching

2 Tools
The discrete Morse theory
The Gallai-Edmonds decomposition

3 Proof of the main theorem

4 Some questions
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Some Questions

Is there a purely combinatorial proof for the following
theorem?

Theorem

Let E1, . . . ,E3k−2 be sets of edges in an arbitrary graph such
that

ν(Ei ∪ Ej) ≥ k for every i 6= j .

Then, there exists a rainbow matching of size k.

It seems that for many graphs H, NMk(H) has its
non-vanishing homology at only single dimension, but not
always. For which H does NMk(H) have non-vanishing
homology in at least two dimensions?
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Thank you for your attention!

any questions?
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