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Fan’s lemma

Theorem (Fan (1952))
Let T be a centrally symmetric triangulation of S°. Consider a
labeling \: V(T) — Z \ {0} such that

e \(u) + A(v) # 0 for all pairs of adjacent vertices u, v.
(There is no complementary edge.)
o \(—Vv)=—A(v) forallv e V(T).
(A is antipodal.)
= There is an alternating d-simplex.

d-simplex o is alternating if o = (w, . .., V4) with
0 < +A(v0) < —A(v1) < +A(12) < -+ < (=1)A(va)
or with

0 < —A(Vo) < +A(v1) < =A(v2) < -+ < (=1)TF\(va).



Fan’s lemma: applications

Fan’s lemma has many applications, especially in topological
combinatorics:
& Easy and constructive proof of the Borsuk-Ulam theorem.

& Circular chromatic number of Kneser graphs, and
variations (M. 2005, Simonyi-Tardos 2006, Chen 2011,
Alishahi-Hajiabolhassan 2015, etc.).

& Local chromatic number (Simonyi-Tardos 2006).
& Quadrangulations of projective spaces (Kaiser-Stehlik 2015).
& Fair divisions (Simonyi 2008).

& Short proof of the Babson-Kozlov-Lovasz theorem (on
Hom(Car11, G)).
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Sperner’s lemma




Two labelings for Sperner’s lemma

A >
Z\ \/




Two labelings for Sperner’s lemma

N >
N >/ \

Theorem (Babson 2012)

Let T be a triangulation of the d-simplex /\? with two Sperner
labelings A1, A\o. For every choice of two nonnegative integers
di + d» = d, there exists o € T having for each i a rainbow
d;-face in \;.




A multilabeled version of Sperner’s lemma

Theorem (Babson 2012)

Let T be a triangulation of the d-simplex /\% with m Sperner
labelings \1, ..., Am. For every choice of m nonnegative

integers dy + - - - + dy = d, there exists o € T having for each i
a rainbow d;-face in ;.
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Multilabeled Fan’s lemma

Given a centrally symmetric triangulation T of S, a Fan
labeling A: V(T) — Z\ {0} is a labeling s.t.
e \(u) + A(v) # 0 for all pairs of adjacent vertices u, v.
o A\(—Vv)=—-A(v)forall ve V(T).

Theorem (Fan (1952))

Let T be a centrally symmetric triangulation of S¢ with a Fan
labeling \. Then there is an alternating d-simplex.



Multilabeled Fan’s lemma

Given a centrally symmetric triangulation T of S, a Fan
labeling A\: V(T) — Z \ {0} is a labeling s.t.
e \(u) + A(v) # 0 for all pairs of adjacent vertices u, v.
o A\(—V)=—A(v)forall ve V(T).

Theorem (M., Su (2019))

Let T be a centrally symmetric triangulation of S with m Fan
labelings \1, ..., Am. For every choice of m nonnegative
integers d; + - - - + dpy = d, there exists o € T having for each i
an alternating d;-face in ;.



Multilabeled Fan’s lemma

—5 42

—6—4

+1-3

Theorem (M., Su (2019))

Let T be a centrally symmetric triangulation of S¢ with m Fan
labelings \1, ..., \m. For every choice of m nonnegative

integers dy + - - - + dy = d, there exists o € T having for each i
an alternating d;-face in ;.



Proof

Alishahi (2017) showed how to prove Fan’s lemma from
Tucker’s lemma (or Borsuk-Ulam) in a direct way:

On each vertex o of sd(T), put a label that records the size of
the largest alternating face of o.

Here:
Proof by contradiction.
Define p(o) = £[dy + -+ + dix(s)—1 + alty, () (0)], Where

o alty,(c) = maximum number of vertices of an alternating
face of 0.

o i*(o) = smallest / such that alt) () < d.
Apply Tucker lemma.



The most general form

ind(K) := min {d: K — §9}.

Theorem (M., Su (2019))

LetK be a free simplicial Z,-complex with m Fan labelings

M, ..., Am. For every choice of m nonnegative integers

di + -+ + dpn = ind(K), there exists o € K having for each i an
alternating d;-face in \;.



Plan

Applications
Rainbow bipartite subgraphs
Splitting necklaces
Multilabeled Sperner lemma



Plan

Applications
Rainbow bipartite subgraphs



Rainbow bipartite subgraphs

Graph G = (V,E)

Hom(Kz, G) is the poset s.t. (X, Y) is an element if
o X,)Y#UT
o XNY =02
o G[X, Y] is complete bipartite

with (X, Y) < (X', V)<= XC X' and Y C Y.

Theorem (Simonyi, Tardif, Zsban (2013))
Any properly colored graph G contains a rainbow K 19741,1¢] 41
with d = ind(Hom(K>, G)).

Strengthening of a theorem by Simonyi and Tardos (2007).



Example
Kneser graph KG(n, k) :=
graph with V = (I)) and E = {AB: AN B = o}.

KG(6,2) =

d = ind(Hom(Kz, KG(8, 2))) = 2, existence of rainbow K(g1+1,tgj+1
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Kneser graph KG(n, k) :=
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KG(6,2) =

d = ind(Hom(Kz, KG(8, 2))) = 2, existence of rainbow K(g1+1,tgj+1



Multirainbow bipartite subgraphs

Theorem
Consider a graph G with m proper co/orings ci,...,Cm. Forany

choice of nonnegative integers s.t. Z d; = ind(Hom(Kz, G)),

there exists a complete bipartite subgraph that contains for

each i a rainbow K _, d; with respect to c;.
2

[Z1+1,17]+1



Example with two colorings
Schrijver graph SG(n, k) :=
graph with V = {k-stable sets of the n-cycle} and E = {AB: AN B = o}.

o +do =1+ 1 =ind(Hom(Kz,SG(8,3))) = 2

existence of rainbow K(%HLL%JH
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Fair splitting

k-splitting = partition of [0, 1] into k + 1 intervals I, ..., l+1 (uses k cuts).

Given continuous measures w1, ..., um on [0, 1], a k-splitting is fair if there is
a partition A, B of [k + 1] s.t. i (Upea le) = wi (Upep le) for all i.

Theorem (Hobby, Rice (1965); Goldberg, West (1985))

For any choice of t continuous measures on [0, 1], there exists
a fair t-splitting.



Balanced splitting

Given continuous measures w1, ..., um on [0, 1], a k-splitting is balanced if
there is a partition A, Bof [k + 1] and a v € R; s.t.

o i (Ugenle) = i (Ugeg le) +~ for [m/2] indices i.

o i (Ugeg le) = i (Ugen le) + for the other | m/2] indices i.

Theorem (Palvélgyi (2009) — special case)

For any choice of t + 1 continuous measures on [0, 1], there
exists a balanced t-splitting.

H
Alice 1 Bob . Alice
h h

The theorem implies the fair splitting result (xm = 0).



Balanced splitting of multiple necklaces

Theorem
Consider finite collections My, . .., My, of continuous

measures on [0,1]. If >, |M;| = m+ t, then there exists a
t-splitting that is balanced for all M; simultaneously.
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Fan’s lemma implies Sperner’s lemma

Fan with labels +1,+2,..., £(d + 1)
= existence of an alternating simplex
= existence of a rainbow simplex



Elementary proof of multilabeled Sperner’s lemma

Multilabeled Sperner lemma — reminder:

Theorem (Babson 2012)

Let T be a triangulation of the d-simplex /% with m Sperner
labelings \1, ..., \m. For every choice of m nonnegative
infegers dy + - - - + dy = d, there exists o € T having for each i
a rainbow d;-face in \;.

Elementary proof (and constructive):

Multilabeled Fan with labels +£1,+2,..., £(d + 1)
= existence of a simplex with an alternating d;-face for each \;
= existence of a simplex with a rainbow d;-face for each ); [



Thank you.
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