Rainbows in Fractional Matroid Polytopes

Joseph Briggs* (Technion), Minki Kim

CoSP Workshop and School on Topological Methods 25th July, 2019

Rainbow Sets

Definition

Given a family $\mathcal{F} = \{A_1, \ldots, A_t\}$ of subsets of V, say $\{a_1, \ldots, a_k\} \subset V$ is rainbow if there are distinct i_1, \ldots, i_k such that every $a_{i_i} \in A_j$.

That is, $\{a_1, \ldots, a_k\}$ can be matched in the bipartite incidence graph of \mathcal{F} .

Rainbow Matchings

Theorem (Drisko)

Any 2n - 1 n-matchings in a bipartite graph have a rainbow n-matching.

Note that 2n - 2 matchings are insufficient:

Conjecture (Aharoni-Berger)

2n n-matchings in any graph contain a rainbow n-matching.

Joseph Briggs (Technion)

Rainbows in Fractional Matroid Polytope

Rainbow Fractional Matchings

König: $\nu = \nu^*$ for bipartite graphs.

So, can replace "n-matchings" with "n-fractional matchings" in Drisko!

Theorem (Aharoni-Holzman-Jiang)

Let *H* be an *r*-partite hypergraph, and suppose $F_1, \ldots, F_{rn-r+1} \subset E(H)$ satisfy $\nu^*(F_i) \ge n$. Then \exists rainbow $F \subset E(H)$ satisfying $\nu^*(F) \ge n$.

d-collapsibility

Let *C* be a simplicial complex. Say $\sigma \in C^{\leq d}$ is in a unique maximal τ . Let $[\sigma, \tau]$ denote all faces containing σ , and describe its removal from *C* as an *elementary d-collapse*.

Definition

C is *d*-collapsible if it can be reduced to \emptyset by elementary *d*-collapses.

Theorem (Kalai-Meshulam)

Say C is d-collapsible. Then any d + 1 sets \notin C have a rainbow set \notin C.

Matroidal Rainbows

Theorem (Kotlar-Ziv)

Let M_1, M_2 be matroids on V. Then any 2n - 1 n-sets in $M_1 \cap M_2$ have a rainbow set in $M_1 \cap M_2$.

Drisko is the case where both M_1, M_2 are partition matroids:

$$F \in M_1 \Leftrightarrow F = \bigwedge \quad | \quad \bigwedge \quad \cdots$$
$$F \in M_2 \Leftrightarrow F = \bigvee \quad | \quad \bigvee \quad \cdots$$
$$F \in M_1 \cap M_2 \Leftrightarrow F = | \quad | \quad | \quad | \quad | \quad \cdots$$

Edmonds, AKA "Matroidal König"

Let M, M' be matroids on V. The fractional matroid polytope P(M) is given by

$$P(M) := \{ f \in \mathbb{R}^V_+ : \forall A \subset V, f(A) \le \operatorname{rk}_M(A) \}.$$

Here f(A) denotes $\sum_A f(x)$.

Lemma

The vertices of P(M) are precisely the indicator vectors $\mathbf{1}_A$ for independent sets $A \in M$.

Theorem (Matroid Intersection Theorem)

The vertices of $P(M) \cap P(M')$ are precisely the indicator vectors $\mathbf{1}_A$ for sets $A \in M \cap M'$ which are independent in both matroids.

Common Generalisation of AHJ and KZ

Write |f| for f(V). This way, $|\mathbf{1}_A| = |A|$.

Theorem (B.-Kim)

Let M_1, \ldots, M_r be matroids on V. Say $f_1, \ldots, f_{rn-r+1} \in \bigcap_i P(M_i)$ all have $|f_j| \ge n$. Then there is an $f \in \bigcap_i P(M_i)$, of size $|f| \ge n$, whose support is rainbow in $\{supp(f_i)\}$.

AHJ showed $C := \{F \subset E(H) : \nu^*(F) < n\}$ is (rn - r)-collapsible. We show the same, redefining ν^* thus:

$$u^*(W) := \max\left\{|f|: f \in \bigcap_i P(M_i), \operatorname{supp}(f) \subseteq W\right\}.$$

Diagram of Theorems

AHJ-Style Approach

Choose an *inclusion-minimal* σ := W maximising ν*(W) = n̄ < n;
Perturb LP defining ν* and ∩ P(M_i)!

- Unique DP solution $\Leftrightarrow W$ extends to unique maximal τ ,
- Generalise $|f| = \sum f(x)$ to $\sum a_x f(x)$, and reduce:

$$a_x \mapsto \left\{ egin{array}{cc} a_x & x \in W \ a_x - \epsilon & x \in V ig W \end{array}
ight.$$

decreases objective everywhere *except* $[W, \tau]$, allowing induction! • |W| < rn - r?!?

Vertices of Polytopes

Let $f \in \bigcap P(M_i)$ be a vertex witnessing $\nu^*(W) = \bar{n} = |f|$.

- Minimality of $W \Rightarrow f \neq 0$ on all of W.
- f vertex $\Rightarrow |W|$ L.I. inequalities of $\bigcap P(M_i)$, of form " $f(A) \leq \operatorname{rk}_{M_i}(A)$ " are "=",

(the only other inequalities defining $\bigcap P(M_i)$ are the " $f(x) \ge 0$ "s!)

Say w_i equalities are from M_i , so that $|W| = \sum_i w_i$.

Even More Inequalities at Equality

Since $f(A) = \sum_{A} f(x)$ and rk is submodular:

$$f(A) + f(B) = f(A \cap B) + f(A \cup B), \text{ and}$$
(1)

$$\operatorname{rk}_{M_i}(A) + \operatorname{rk}_{M_i}(B) \ge \operatorname{rk}_{M_i}(A \cap B) + \operatorname{rk}_{M_i}(A \cup B); \text{ hence:}$$
(2)

Lemma

 $\mathcal{F}_i := \{A \subset V : f(A) = \operatorname{rk}_{M_i}(A)\}$ is closed under \bigcap and \bigcup .

12 / 19

Chain-Building

Lemma

Suppose $\mathcal{F} \subset 2^V$ contains t L.I. sets, and is closed under \bigcap and \bigcup . Then \mathcal{F} contains a "chain" $\emptyset \subsetneq A_1 \subsetneq \cdots \subsetneq A_t$ of length t.

Proof: Induct! While k < t, choose $B \in \mathcal{F} \setminus \text{span}\{A_i\}_{i=1}^k$.

Proof of Chain-Building

Given $\emptyset =: A_0 \subsetneq A_1 \subsetneq \cdots \subsetneq A_k$, for some k < t, let $B \in \mathcal{F} \setminus \operatorname{span} \{A_i\}_{i=1}^k$. Is there a *j*, with both $(A_{j+1} \setminus A_j) \cap B \neq \emptyset$ AND $(A_{j+1} \setminus A_j) \setminus B \neq \emptyset$? If YES, insert:

$$\dots A_{j-1} \subsetneq A_j \xrightarrow{\zeta_{\mathcal{F}}} \underbrace{A_j \cup (A_{j+1} \cap B)}_{\in \mathcal{F}} \xrightarrow{\langle} A_{j+1} \subsetneq A_{j+2} \dots$$

If NO, $B = \bigcup_{S} (A_{j+1} \setminus A_j) \Rightarrow \mathbf{1}_B = \sum_{S} (\mathbf{1}_{A_{j+1}} - \mathbf{1}_{A_j})$, contradicting $B \notin \operatorname{span}\{A_1, \ldots, A_t\}!$

Joseph Briggs (Technion)

 $|W| \leq rn - r$

In $\mathcal{F}_i := \{A : f(A) = \operatorname{rk}_{M_i}(A)\}$, there is a chain $\emptyset \subsetneq A_1 \subsetneq \cdots \subsetneq A_{w_i}.$

But, as $f|_W > 0$:

$$egin{array}{rcl} 0 < & f(A_1) & < \cdots < & f(A_{w_i}) & \leq f(V) = |f| < n \ & & \parallel & & \parallel \ & \operatorname{rk}_{M_i}(A_1) & \cdots & \operatorname{rk}_{M_i}(A_{w_i}) & & & ert ee & & & ee & ee & & ee & & ee & ee & ee & & ee & & ee & ee & ee & & ee & e$$

so $w_i \leq n-1$ as it is an integer. Hence $|W| = \sum_{i \in [r]} w_i \leq rn-r$.

Perturbation Restrictions

Given $b: 2^V \to \mathbb{R}_+$, and matroid M on V, the skew matroid polytope is

$$P_{\boldsymbol{b}}(\boldsymbol{M}) := \{ f \in \mathbb{R}^{\boldsymbol{V}}_+ : \forall \boldsymbol{A} \subset \boldsymbol{V}, f(\boldsymbol{A}) \leq \boldsymbol{b}(\boldsymbol{A}) \operatorname{rk}(\boldsymbol{A}) \}.$$

Alas, the submodularity condition (2) fails for general $b(A) \cdot rk(A)$! One can't perturb *b* arbitrarily. Must balance:

- Keeping $\{b\}$'s general enough to allow perturbations, and
- Restricting to only b's for which $b \cdot rk$ is submodular.

Already desire b to be decreasing, for

$$f(A_1) = b(A_1)\operatorname{rk}(A_1) < \cdots < b(A_t)\operatorname{rk}(A_t) = f(A_t)$$

to imply

$$\operatorname{rk}(A_1) < \cdots < \operatorname{rk}(A_t).$$

An Old Exercise from Undergraduate Analysis

Lemma (Folklore)

Suppose f, g are convex functions, with f increasing and g decreasing. Then $f \cdot g$ is convex.

Lemma (...stackexchange?)

Suppose f, g are submodular functions, with f increasing and g decreasing. Then $f \cdot g$ is submodular.

Proof: For $\Delta_Y(f)(X) := f(X \cup Y) - f(X)$, write

 $f \cdot g(A \cup B) + f \cdot g(A \cap B) - f \cdot g(A) - f \cdot g(B) = \Delta_{B \setminus A} \Delta_{A \setminus B}(f \cdot g)(A \cap B),$

and apply a "product rule for discrete derivatives".

Suggests restricting such $b: 2^{V} \to \mathbb{R}_{+}$ to functions which are Positive, Decreasing, and Submodular (or "PDS").

PDS Functions are Still Sufficiently General

Thus, to allow the perturbations, it suffices to prove:

Lemma

The cone

$$Q := \left\{ b \in \mathbb{R}^{2^{V}} : b \ PDS \right\}$$

has full dimension.

To see this, let $b(A) := 2|V|^2 - |A|^2$ for every $A \in 2^V$. Then *b* is strictly positive, strictly decreasing, and strictly submodular! So it's in the interior of Q.

Thank you