# Noon lecture

list of noon lectures ( 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | future lectures)

On 20.10.2005 at 12:20 in S7, there is the following noon lecture:

# A New Methodology in Geometric Transversal Theory

## Ricky Pollack

## Abstract

We (in joint work with J. E. Goodman) describe a new encoding of a family of mutually disjoint compact convex sets that captures many of its combinatorial properties and use it to give a new proof of the Edelsbrunner-Sharir theorem that a collection of $n$ mutually disjoint compact convex sets in the plane cannot be met by straight lines in more than $2n-2$ combinatorially distinct ways. The encoding generalizes our encoding of planar point configurations by "allowable sequences" of permutations. Since it applies as well to a collection of compact connected sets with a specified pseudoline arrangement $\cal A$ of separators and double tangents the result extends the Edelsbrunner-Sharir theorem to the case of geometric permutations induced by pseudoline transversals compatible with $\cal A$.We also describe another aproach via topological affine planes which yields a proof of a similar generalization of the

list of noon lectures ( 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | future lectures)

Webmaster: kamweb.mff.cuni.cz Modified: 25. 02. 2019