Math++ Problems

Problem set 4 - Polynomials
hints after 27.5.2020, solutions due 30.6. 2020

Definition: Let \mathbb{K} be a field and let $f_{1}, \ldots, f_{k} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. We define the variety of f_{1}, \ldots, f_{k} as the set

$$
V\left(f_{1}, \ldots, f_{k}\right):=\bigcap_{i=1}^{k}\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n}: f_{i}\left(x_{1}, \ldots, x_{n}\right)=0\right\} .
$$

Definition: Let $f=\sum_{i=0}^{k} f_{i} x^{i}$ a $g=\sum_{j=0}^{l} g_{j} x^{j}$ be polynomials of a single variable over a field \mathbb{K}. Then the resultant $\operatorname{Res}(f, g, x)$ is the determinant of the Sylvester matrix $\left(F_{l} \mid G_{k}\right)$, where $F_{l} \in \mathbb{C}^{(l+k) \times l}$ and $\left(F_{l}\right)_{r, c}=f_{r-c}$, the indexing of the rows and the columns starts from 0 , and $f_{i}=0$ if $i \notin[0, k]$. We define G_{k} analogously. Here is an example of the Sylvester matrix for $k=2$ and $l=3$:

$$
\left(\begin{array}{ccccc}
f_{0} & 0 & 0 & g_{0} & 0 \\
f_{1} & f_{0} & 0 & g_{1} & g_{0} \\
f_{2} & f_{1} & f_{0} & g_{2} & g_{1} \\
0 & f_{2} & f_{1} & g_{3} & g_{2} \\
0 & 0 & f_{2} & 0 & g_{3}
\end{array}\right)
$$

1. Is it true that a polynomial of degree at most d over a ring has at most d roots? Prove or disprove.
2. Let \mathbb{K} be a field and $S \subset \mathbb{T}$ be a finite set. For any n and $d \leq|S|$ find a polynomial of n variables of degree d, such that the zero set of this polynomial contains contains exactly $d|S|^{n-1}$ points in S^{n}.
3. Prove that the sets $\mathbb{Z} \subseteq \mathbb{R}$ and $[0,1]^{2} \subseteq \mathbb{R}^{2}$ are not algebraic varieties (over \mathbb{R}).
4. Let \mathbb{F} be a finite field.
(a) Let $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial, which contains only monomials $x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ such that $\min \left(i_{1}, \ldots, i_{n}\right)<|\mathbb{F}|-1$. Show that $\sum_{x \in \mathbb{F}^{n}} f(x)=0$.
(b) Assume that $\operatorname{char}(\mathbb{F})=p$ where p is a prime number. Let $f_{1}, \ldots, f_{k} \in$ $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be nonzero polynomials such that $\operatorname{deg}\left(f_{1}\right)+\cdots+\operatorname{deg}\left(f_{k}\right)<$ n. Prove that the size of $V\left(f_{1}, \ldots, f_{k}\right)$ is divisible by p.
(c) Let $n \geq 1$ be an integer and $f \in \mathbb{F}[x]$ be polynomial of degree n. Show that either $f(\mathbb{F})=\mathbb{F}$, or $|f(\mathbb{F})| \leq|\mathbb{F}|-\frac{|\mathbb{F}|-1}{n}$.
5. Let $f, g \in \mathbb{R}[x, y]$ be irreducible polynomials. Is it true that $V(f, g)$ is irreducible as well?
6. Prove the weak Nullstellensatz for $n=1$. More precisely, let \mathbb{K} be an algebraically closed field a let $I \subseteq \mathbb{K}[x]$ ba an ideal such that $V(I)=\emptyset$. Show that $I=\mathbb{K}[x]$.
7. Let \mathbb{K} be a field. Show that if polynomials $f, g \in \mathbb{K}[x]$ have no common nonconstant factor, then there are polynomials $u, v \in \mathbb{K}[x]$, such that $u f+v g=1$. Hint: Use Euclid's algorithm.
8. Let \mathbb{K} be a field. Show that for every $f, g \in \mathbb{K}[x]$, if $\operatorname{Res}(f, g, x)=0$, then the polynomials f, g contain a common non-constant factor.
