Math++ Problems

Problem set 4 – Polynomials

hints after 27.5.2020, solutions due 30.6.2020

Definition: Let \mathbb{K} be a field and let $f_1, \ldots, f_k \in \mathbb{K}[x_1, \ldots, x_n]$. We define the variety of f_1, \ldots, f_k as the set

$$V(f_1,\ldots,f_k) := \bigcap_{i=1}^k \{(x_1,\ldots,x_n) \in \mathbb{K}^n : f_i(x_1,\ldots,x_n) = 0\}.$$

Definition: Let $f = \sum_{i=0}^k f_i x^i$ a $g = \sum_{j=0}^l g_j x^j$ be polynomials of a single variable over a field \mathbb{K} . Then the resultant $\operatorname{Res}(f,g,x)$ is the determinant of the Sylvester matrix $(F_l|G_k)$, where $F_l \in \mathbb{C}^{(l+k)\times l}$ and $(F_l)_{r,c} = f_{r-c}$, the indexing of the rows and the columns starts from 0, and $f_i = 0$ if $i \notin [0,k]$. We define G_k analogously. Here is an example of the Sylvester matrix for k=2 and l=3:

$$\begin{pmatrix} f_0 & 0 & 0 & g_0 & 0 \\ f_1 & f_0 & 0 & g_1 & g_0 \\ f_2 & f_1 & f_0 & g_2 & g_1 \\ 0 & f_2 & f_1 & g_3 & g_2 \\ 0 & 0 & f_2 & 0 & g_3 \end{pmatrix}$$

- 1. Is it true that a polynomial of degree at most d over a ring has at most d roots? Prove or disprove. [1]
- 2. Let \mathbb{K} be a field and $S \subset \mathbb{T}$ be a finite set. For any n and $d \leq |S|$ find a polynomial of n variables of degree d, such that the zero set of this polynomial contains contains exactly $d|S|^{n-1}$ points in S^n .
- 3. Prove that the sets $\mathbb{Z} \subseteq \mathbb{R}$ and $[0,1]^2 \subseteq \mathbb{R}^2$ are not algebraic varieties (over \mathbb{R}).
- 4. Let \mathbb{F} be a finite field.
 - (a) Let $f \in \mathbb{F}[x_1, \dots, x_n]$ be a polynomial, which contains only monomials $x_1^{i_1} \cdots x_n^{i_n}$ such that $\min(i_1, \dots, i_n) < |\mathbb{F}| 1$. Show that $\sum_{x \in \mathbb{F}^n} f(x) = 0$. [2]
 - (b) Assume that $\operatorname{char}(\mathbb{F}) = p$ where p is a prime number. Let $f_1, \ldots, f_k \in \mathbb{F}[x_1, \ldots, x_n]$ be nonzero polynomials such that $\deg(f_1) + \cdots + \deg(f_k) < n$. Prove that the size of $V(f_1, \ldots, f_k)$ is divisible by p. [2]
 - (c) Let $n \geq 1$ be an integer and $f \in \mathbb{F}[x]$ be polynomial of degree n. Show that either $f(\mathbb{F}) = \mathbb{F}$, or $|f(\mathbb{F})| \leq |\mathbb{F}| \frac{|\mathbb{F}|-1}{n}$. [3]
- 5. Let $f, g \in \mathbb{R}[x, y]$ be irreducible polynomials. Is it true that V(f, g) is irreducible as well?
- 6. Prove the weak Nullstellensatz for n=1. More precisely, let \mathbb{K} be an algebraically closed field a let $I\subseteq\mathbb{K}[x]$ be an ideal such that $V(I)=\emptyset$. Show that $I=\mathbb{K}[x]$.

- 7. Let \mathbb{K} be a field. Show that if polynomials $f, g \in \mathbb{K}[x]$ have no common non-constant factor, then there are polynomials $u, v \in \mathbb{K}[x]$, such that uf + vg = 1. Hint: Use Euclid's algorithm. [2]
- 8. Let \mathbb{K} be a field. Show that for every $f, g \in \mathbb{K}[x]$, if $\operatorname{Res}(f, g, x) = 0$, then the polynomials f, g contain a common non-constant factor. [2]