Math++ Problems

Problem set 3 – Representations of finite groups

hints after 13.5.2020, solutions due 20.5.2020

Definition: S_n denotes the symmetric group of permutations of $\{1, \ldots, n\}$.

Definition: Unless stated otherwise, we will use the inner product given by $\langle \varphi, \psi \rangle = \mathbb{E}_{g \in G} \varphi(g) \overline{\psi(g)}$ for $\varphi, \psi \colon G \to \mathbb{C}$.

- 1. Find a representation $g: G \to \operatorname{GL}(V)$ with an invariant subspace $W \subset V$ such that W^{\perp} is not invariant. [1]
- 2. Let $\rho: G \to \operatorname{GL}(\mathbb{C}^n)$ be an irreducible representation. Let R_g be a matrix of $\rho(g)$ with respect to a fixed basis. Assume that all R_g are unitary for every $g \in G$. Let $r_{i,j}(g)$ be the entry of R_g at position i, j. Note that $r_{i,j}$ is a function $G \to \mathbb{C}$ for i and j fixed. Prove that $\langle r_{i,j}, r_{k,l} \rangle = 1/n$ for (i, j) = (k, l) and $\langle r_{i,j}, r_{k,l} \rangle = 0$ otherwise. [1]
- 3. (Maschke's theorem over a field of characteristic 0.) Let G be a finite group, \mathbb{T} be a field of characteristic 0 and $\rho: G \to \operatorname{GL}(V)$ be a representation with $\dim V < \infty$. Prove that if U is an invariant subspace of V, then there is an invariant subspace W such that $V = U \oplus W$. [2] *Hint:* Define W as the kernel of a suitably weighted projection $V \to U$.
- 4. Let $\rho: G \to \operatorname{GL}(\mathbb{C}^n)$ be an irreducible representation of a finite group G with character χ . Let C be the centre of G (that is $C := \{s \in G \mid (\forall g \in G)(sg = gs)\})$.
 - (a) Prove that for every $s \in C$ there is $c_s \in \mathbb{C}$ such that $\rho_s = c_s I_n$. Deduce that $|\chi(s)| = n$ for every $s \in C$. [1]
 - (b) Prove that $n^2 \le |G| / |C|$. [1]
 - (c) Assume that $\rho_s \neq I_n$ for every $s \neq 1_G$. Show that C is a cyclic group. [2]
- 5. Find all irreducible representations of the cyclic group of order $n \in \mathbb{N}$ and their characters. Check that this way, you get exactly the characters which you know from commutative Fourier analysis. Check also that the formula for non-commutative Fourier analysis agrees with the formula for commutative one in this case. [1]
- 6. Let $\rho: S_n \to \operatorname{GL}(\mathbb{C}^n)$ be the permutation representation of S_n . Let $W := \{v \in \mathbb{C}^n \mid \sum_{i=1}^{n} v_i = 0\}$. Prove that the restriction of ρ to W is an irreducible representation of S_n for every $n \ge 2$. [2]
- 7. Prove that $\widehat{\varphi * \psi}(\rho) = \widehat{\varphi}(\rho)\widehat{\psi}(\rho)$ for a representation $\rho: G \to \operatorname{GL}(\mathbb{C}^n)$. [1]
- 8. Given $\pi \in S_n$ let us define $\lambda(\pi) = (\lambda_1, \ldots, \lambda_k)$ as the vector of lengths of all cycles in π order in a nonincreasing sequence.
 - (a) Prove that two permutations $\pi, \sigma \in S_n$ are conjugate if and only if $\lambda(\pi) = \lambda(\sigma)$. [1]
 - (b) Describe the Specht module S^{λ} and the action of S_n on it explicitly for $\lambda = (n), \lambda' = (1, ..., 1)$ and $\lambda'' = (n 1, 1)$. [2]