Math++ Problems

Problem set 3 - Representations of finite groups

hints after 13.5.2020, solutions due 20.5. 2020

Definition: S_{n} denotes the symmetric group of permutations of $\{1, \ldots, n\}$.
Definition: Unless stated otherwise, we will use the inner product given by $\langle\varphi, \psi\rangle=$ $\mathbb{E}_{g \in G} \varphi(g) \overline{\psi(g)}$ for $\varphi, \psi: G \rightarrow \mathbb{C}$.

1. Find a representation $g: G \rightarrow \mathrm{GL}(V)$ with an invariant subspace $W \subset V$ such that W^{\perp} is not invariant.
2. Let $\rho: G \rightarrow \mathrm{GL}\left(\mathbb{C}^{n}\right)$ be an irreducible representation. Let R_{g} be a matrix of $\rho(g)$ with respect to a fixed basis. Assume that all R_{g} are unitary for every $g \in G$. Let $r_{i, j}(g)$ be the entry of R_{g} at position i, j. Note that $r_{i, j}$ is a function $G \rightarrow \mathbb{C}$ for i and j fixed. Prove that $\left\langle r_{i, j}, r_{k, l}\right\rangle=1 / n$ for $(i, j)=(k, l)$ and $\left\langle r_{i, j}, r_{k, l}\right\rangle=0$ otherwise.
3. (Maschke's theorem over a field of characteristic 0 .) Let G be a finite group, \mathbb{T} be a field of characteristic 0 and $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation with $\operatorname{dim} V<\infty$. Prove that if U is an invariant subspace of V, then there is an invariant subspace W such that $V=U \oplus W$.
Hint: Define W as the kernel of a suitably weighted projection $V \rightarrow U$.
4. Let $\rho: G \rightarrow \mathrm{GL}\left(\mathbb{C}^{n}\right)$ be an irreducible representation of a finite group G with character χ. Let C be the centre of G (that is $C:=\{s \in G \mid(\forall g \in G)(s g=g s)\})$.
(a) Prove that for every $s \in C$ there is $c_{s} \in \mathbb{C}$ such that $\rho_{s}=c_{s} I_{n}$. Deduce that $|\chi(s)|=n$ for every $s \in C$.
(b) Prove that $n^{2} \leq|G| /|C|$.
(c) Assume that $\rho_{s} \neq I_{n}$ for every $s \neq 1_{G}$. Show that C is a cyclic group. [2]
5. Find all irreducible representations of the cyclic group of order $n \in \mathbb{N}$ and their characters. Check that this way, you get exactly the characters which you know from commutative Fourier analysis. Check also that the formula for non-commutative Fourier analysis agrees with the formula for commutative one in this case.
6. Let $\rho: S_{n} \rightarrow \mathrm{GL}\left(\mathbb{C}^{n}\right)$ be the permutation representation of S_{n}. Let $W:=$ $\left\{v \in \mathbb{C}^{n} \mid \sum_{i}^{n} v_{i}=0\right\}$. Prove that the restriction of ρ to W is an irreducible representation of S_{n} for every $n \geq 2$.
7. Prove that $\widehat{\varphi * \psi}(\rho)=\widehat{\varphi}(\rho) \widehat{\psi}(\rho)$ for a representation $\rho: G \rightarrow \mathrm{GL}\left(\mathbb{C}^{n}\right)$.
8. Given $\pi \in S_{n}$ let us define $\lambda(\pi)=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ as the vector of lengths of all cycles in π order in a nonincreasing sequence.
(a) Prove that two permutations $\pi, \sigma \in S_{n}$ are conjugate if and only if $\lambda(\pi)=$ $\lambda(\sigma)$.
(b) Describe the Specht module S^{λ} and the action of S_{n} on it explicitly for $\lambda=(n), \lambda^{\prime}=(1, \ldots, 1)$ and $\lambda^{\prime \prime}=(n-1,1)$.
