Math++ Problems

Problem set 1 – Harmonic analysis

hints after 18.3.2020, solutions due 25.3.2020

Definition: Given a map $f: \{0,1\}^n \to \{0,1\}$ the *influence of the ith variable* is defined as

$$Inf_i(f) := \Pr[f(x) \neq f(x_1, \dots, x_{i-1}, 1 - x_i, x_{i+1}, \dots, x_n)].$$

Definition: Let G be an Abelian group and $S \subseteq G$ be a symmetric set (ie. $a \in S \Rightarrow -a \in S$). The Cayley graph $\operatorname{Cay}(G, S)$ is a graph where G is the vertex set of $\operatorname{Cay}(G, S)$ and two vertices a, b are connected with an edge iff $b - a \in S$.

Definition: Given two functions $f, g: G \to \mathbb{C}$ their *convolution* is defined as

$$(f * g)(z) := \mathop{\mathbb{E}}_{x \in G} f(x)g(z - x).$$

Definition: Given $f: G \to \mathbb{C}$, the support Supp(f) of f is defined as $\{x \in G: f(x) \neq 0\}$.

1. Compute the influences of all variables for the following maps $f: \{0,1\}^n \to \{0,1\}$:

(a)
$$f(x) = x_1$$
, [0.5]

- (b) $f(x) = \sum_{i} x_i \mod 2,$ [0.5]
- (c) f(x) is the "majority vote". That is, f(x) is the value which is more frequent among x_i . In case of tie, we set f(x) = 0. [1]
- 2. Find a map $f: \{0,1\}^n \to \{0,1\}$ which attains values 0 and 1 with the same frequency, while the influence of each variable is at most $\mathcal{O}(\log(n)/n)$. [3]
- 3. Let G be a finite Abelian group, χ a character of G and $S \subseteq G$ be a symmetric subset of G with $0 \notin S$. Let M be the rescaled incidence matrix of $\operatorname{Cay}(G, S)$ so that $M_{ij} = 1/|S|$ if $j i \in S$ and $M_{ij} = 0$ otherwise.
 - (a) Consider a vector $x \in \mathbb{C}^G$ such that $x_a = \chi(a)$. Prove that x is an eigenvector of $\operatorname{Cay}(G, S)$ (that is of the matrix M). [1]
 - (b) Compute the eigenvalues of the cycle on *n* vertices. [1]
 - (c) Compute the eigenvalues of the *d*-dimensional hypercube H_d , i.e., $V(H_d) = \{0,1\}^d$ and (a,b) is an edge if *a* and *b* differ in exactly one coordinate. [2]
- 4. Find the matrix for the linear map corresponding to the Fourier transform over \mathbb{Z}_n . That is, find a matrix M_n such that for every $f: \mathbb{Z}_n \to \mathbb{C}$ we get

$$(\widehat{f}(\chi_0), \dots, \widehat{f}(\chi_{n-1}))^T = M_n(f(0), \dots, f(n-1))^T$$

Compute $det(M_n)$ and verify that the Fourier transform is a bijection. [2]

- 5. Let G be a finite Abelian group and $f, g: G \to \mathbb{C}$. Prove the following assertions:
 - (a) $\operatorname{Supp}(f * g) \subseteq \operatorname{Supp}(f) + \operatorname{Supp}(g),$ [1]
 - (b) $||f * g||_{\infty} \le ||f||_{p} \cdot ||g||_{q}$, where 1/p + 1/q = 1, [2]
 - (c) $\widehat{f \cdot g}(\chi) = \sum_{\zeta \in \widehat{G}} \widehat{f}(\chi \zeta) \widehat{g}(\zeta).$ [1]