Planar point sets determine many pairwise crossing segments

János Pach, Natan Rubin, Gábor Tardos

18.11.2021

Theorem 1 (main result). Any set V of n points in general position in the plane determines at least $\frac{n}{2O(\sqrt{\log n})}$ pairwise crossing segments.

Denote the open half-plane to the left of the oriented line xy by l(xy). For a non-empty set B in the plane and any two points in the plane, x and y, write $x <_B y$ if B is contained in l(xy).

Lemma 2. Let A and B be nonempty sets in the plane such that their convex hulls are disjoint. Then $<_B$ defines a partial order on A, in which two distinct points x and y are incomparable if and only if the line through x and y intersects conv(B). Further, if $x <_B y$ for $x, y \in A$ and $z <_A t$ for $z, t \in B$, then the segments xz and yt cross.

Denote by $\iota(P,<)$ the number of incomparable elements in the partial order (P,<).

Definition 1. Two point sets $A, B \subset \mathbb{R}^2$ are called *separated* if $conv(A) \cap conv(B) = \emptyset$. Two separated m-element sets, A and B, are said to form an ε -avoiding pair for some $\varepsilon \geq 0$ if

$$\iota(A, <_B) + \iota(B, <_A) \le \varepsilon m^2.$$

For simplicity, a 0-avoiding pair is called *avoiding*.

Theorem 1 can be proven recursively. The initial step is the following lemma.

Lemma 3. Given n points in a plane in general position we can find an ε -avoiding pair of size $\Omega(\varepsilon^4 n)$.

Or, in other words, there exists an absolute constant c > 0 such that for any integer m and any real $\varepsilon > 0$, every point set in general position with least $\frac{cm}{\varepsilon^4}$ points has two separated m-element sets that form an ε -avoiding pair.

And the recursive step is given by the next lemma.

Lemma 4. Given ε -avoiding pair of size m we can find $\frac{k}{8}$ pairwise crossing "super-edges" each on $\frac{m}{k} + \frac{m}{k}$ vertices, each forming 8ε -avoiding pair.

Or, in other words, let k, m and t = 8 be positive integers and set $\varepsilon = \frac{1}{32t^2k}$. Let A and B be sets of points such that |A| = |B| = (t+1)km and $\{A, B\}$ is $\frac{\varepsilon}{t}$ -avoiding pair.

Then we can find pairwise disjoint m-element subsets $A_1, A_2, \ldots, A_k \subset A$ and $B_1, \ldots, B_k \subset B$ such that for every $1 \leq i \leq k$, $\{A_i, B_i\}$ is ε -avoiding pair and, for $1 \leq i < j \leq k$, all segments between A_i, B_i cross every segment between A_j, B_j .

Proof of Lemma 3 1

Lemma 5 (Matoušek). For any n-element point set V in general position in the plane and for any $\varepsilon > 0$, we can find $O\left(\frac{1}{\varepsilon^2}\right)$ lines such that the zone of any other line within their arrangement contains at most εn points of V.

By applying this lemma we can get arrangement of $r = \frac{1}{\varepsilon^2}$ lines. We get approximately r^2 cells. Split cells into smaller clusters of size m. Some vertices are on the lines and some in cells smaller than m but we still have $\geq \frac{n^2}{2m^2} - \frac{2r^2n}{m}$ pairs of clusters containing m points. Compute the number of not ε -avoiding pairs clusters, and conclude that some ε -avoiding pair exists.

Proof of Lemma 4 2

Lemma 6. Let n and k be positive integers, and (P,<) be a poset with |P| > nk and $\iota(P,<) \le \frac{(|P|-nk)^2}{16k}$. Then one can choose suitable n-element subsets A_1, A_2, \ldots, A_k of P with $A_i < A_j$ for all i < j.

Apply Lemma 6 to find suitable subsets $C_i \subseteq A$ and $D_i \subseteq B$ for $1 \le i \le tk$ such that $|C_i| = |D_i| = m$ for all i, and $C_i <_B C_j$, $D_i <_A D_j$ for all i < j.

By Lemma 2 it suffices to find a collection of ε -avoiding pairs $\{(C_a, D_b)\}$ such that b = b(a) is a monotone increasing function of a.

Lemma 7 (Mirsky). Let (P, <) be a finite poset. Then the length of the largest chain in (P, <) is equal to the size k of its smallest possible decomposition into antichains.

Claim 8. If points x and y in A are incomparable in \leq_B , they are still comparable with respect to all but at most one ordering $<_{D_b}$, $1 \le b \le tk$.

Using this claim we can bound the number of not ε -avoiding pairs and show that at least $6tk^2$ ε avoiding pairs exist. Considering partial order defined by $\{C_a, D_b\} < \{C'_a, D'_b\}$ if a < a' and b < b', and using Mirsky theorem we get the suitable collection as a chain of this partial order.

Proof of Theorem 1 3

Lemma 9. Let s be a positive integer and set $K = 8^{\binom{s}{2}}$, $M = 9^s K$, $\varepsilon = 2^{-3s-11}$. Suppose the M-element point sets A and B form a ε -avoiding pair and $A \cup B$ is in general position. Then we can find K pairwise crossing segments, each connecting a point of A to a point of B.

Prove this lemma by induction on s using Lemma 4. Then use this lemma and Lemma 3 to prove the theorem.