Planar point sets determine many pairwise crossing segments
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Theorem 1 (main result). Any set V' of n points in general position in the plane determines at least
m pairwise crossing segments.

Denote the open half-plane to the left of the oriented line zy by [(xy). For a non-empty set B in the
plane and any two points in the plane, x and y, write x <p y if B is contained in I(zy).

Lemma 2. Let A and B be nonempty sets in the plane such that their convex hulls are disjoint. Then
<pg defines a partial order on A, in which two distinct points x and y are incomparable if and only if the
line through x and y intersects conv(B). Further, if v <gy for x,y € A and z <a t for z,t € B, then the
segments xz and yt cross.

Denote by ¢(P, <) the number of incomparable elements in the partial order (P, <).

Definition 1. Two point sets A, B C R? are called separated if conv(A) N conv(B) = (). Two separated
m-element sets, A and B, are said to form an e-avoiding pair for some ¢ > 0 if

L(A, <B> + L(B7 <A) < em?.
For simplicity, a 0-avoiding pair is called avoiding.
Theorem 1 can be proven recursively. The initial step is the following lemma.

Lemma 3. Given n points in a plane in general position we can find an e-avoiding pair of size (e'n).

Or, in other words, there exists an absolute constant ¢ > 0 such that for any integer m and any real
e > 0, every point set in general position with least <3 points has two separated m-element sets that form
an £-avoiding pair.

And the recursive step is given by the next lemma.
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Lemma 4. Given e-avoiding pair of size m we can find 5 pairwise crossing "super-edges” each on T + 5
vertices, each forming 8c-avoiding pair.

Or, in other words, let k,m and t = 8 be positive integers and set € = :m;% Let A and B be sets of
points such that |A| = |B| = (t + 1)km and {A, B} is $-avoiding pair.
Then we can find pairwise disjoint m-element subsets Ay, As,..., A C A and By,...,By C B such

that for every 1 < i < k, {A;, B;} is e-avoiding pair and, for 1 < i < j < k, all segments between A;, B;
cross every segment between Aj;, B;.



1 Proof of Lemma 3

Lemma 5 (Matousek). For any n-element point set V in general position in the plane and for any e > 0,
we can find O (E%) lines such that the zone of any other line within their arrangement contains at most en
points of V.

By applying this lemma we can get arrangement of r = E% lines. We get approximately 72 cells. Split
cells into smaller clusters of size m. Some vertices are on the lines and some in cells smaller than m but
we still have > % — 2n pairs of clusters containing m points.

m
Compute the number of not s-avoiding pairs clusters, and conclude that some e-avoiding pair exists.

2 Proof of Lemma 4

o : (1P|=nk)?
Lemma 6. Let n and k be positive integers, and (P, <) be a poset with |P| > nk and (P, <) < “——.

Then one can choose suitable n-element subsets Ay, Ag, ..., Ay of P with A; < A; for alli < j.

Apply Lemma 6 to find suitable subsets C; C A and D; C B for 1 <i <tk such that |C;| = |D;| =m
for all ¢, and C; < Cj, D; <4 D, for all i < j.

By Lemma 2 it suffices to find a collection of e-avoiding pairs {(C,, D;)} such that b = b(a) is a
monotone increasing function of a.

Lemma 7 (Mirsky). Let (P, <) be a finite poset. Then the length of the largest chain in (P, <) is equal
to the size k of its smallest possible decomposition into antichains.

Claim 8. If points x and y in A are incomparable in <g, they are still comparable with respect to all but
at most one ordering <p,, 1 < b < tk.

Using this claim we can bound the number of not e-avoiding pairs and show that at least 6tk* e-
avoiding pairs exist. Considering partial order defined by {C,, D,} < {C!,D;} if a < @’ and b < ¥/, and
using Mirsky theorem we get the suitable collection as a chain of this partial order.

3 Proof of Theorem 1

Lemma 9. Let s be a positive integer and set K = 8(3), M = 9K, ¢ =273 Suppose the M-element
point sets A and B form a e-avoiding pair and AU B is in general position. Then we can find K pairwise
crossing segments, each connecting a point of A to a point of B.

Prove this lemma by induction on s using Lemma 4. Then use this lemma and Lemma 3 to prove the
theorem.



