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Theorem 1 (main result). Any set V of n points in general position in the plane determines at least
n

2O(
√

logn) pairwise crossing segments.

Denote the open half-plane to the left of the oriented line xy by l(xy). For a non-empty set B in the
plane and any two points in the plane, x and y, write x <B y if B is contained in l(xy).

Lemma 2. Let A and B be nonempty sets in the plane such that their convex hulls are disjoint. Then
<B defines a partial order on A, in which two distinct points x and y are incomparable if and only if the
line through x and y intersects conv(B). Further, if x <B y for x, y ∈ A and z <A t for z, t ∈ B, then the
segments xz and yt cross.

Denote by ι(P,<) the number of incomparable elements in the partial order (P,<).

Definition 1. Two point sets A,B ⊂ R2 are called separated if conv(A) ∩ conv(B) = ∅. Two separated
m-element sets, A and B, are said to form an ε-avoiding pair for some ε ≥ 0 if

ι(A,<B) + ι(B,<A) ≤ εm2.

For simplicity, a 0-avoiding pair is called avoiding.

Theorem 1 can be proven recursively. The initial step is the following lemma.

Lemma 3. Given n points in a plane in general position we can find an ε-avoiding pair of size Ω(ε4n).

Or, in other words, there exists an absolute constant c > 0 such that for any integer m and any real
ε > 0, every point set in general position with least cm

ε4
points has two separated m-element sets that form

an ε-avoiding pair.

And the recursive step is given by the next lemma.

Lemma 4. Given ε-avoiding pair of size m we can find k
8

pairwise crossing ”super-edges” each on m
k

+ m
k

vertices, each forming 8ε-avoiding pair.

Or, in other words, let k,m and t = 8 be positive integers and set ε = 1
32t2k

. Let A and B be sets of
points such that |A| = |B| = (t+ 1)km and {A,B} is ε

t
-avoiding pair.

Then we can find pairwise disjoint m-element subsets A1, A2, . . . , Ak ⊂ A and B1, . . . , Bk ⊂ B such
that for every 1 ≤ i ≤ k, {Ai, Bi} is ε-avoiding pair and, for 1 ≤ i < j ≤ k, all segments between Ai, Bi

cross every segment between Aj, Bj.
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1 Proof of Lemma 3

Lemma 5 (Matoušek). For any n-element point set V in general position in the plane and for any ε > 0,
we can find O

(
1
ε2

)
lines such that the zone of any other line within their arrangement contains at most εn

points of V .

By applying this lemma we can get arrangement of r = 1
ε2

lines. We get approximately r2 cells. Split
cells into smaller clusters of size m. Some vertices are on the lines and some in cells smaller than m but
we still have ≥ n2

2m2 − 2r2n
m

pairs of clusters containing m points.
Compute the number of not ε-avoiding pairs clusters, and conclude that some ε-avoiding pair exists.

2 Proof of Lemma 4

Lemma 6. Let n and k be positive integers, and (P,<) be a poset with |P | > nk and ι(P,<) ≤ (|P |−nk)2
16k

.
Then one can choose suitable n-element subsets A1, A2, . . . , Ak of P with Ai < Aj for all i < j.

Apply Lemma 6 to find suitable subsets Ci ⊆ A and Di ⊆ B for 1 ≤ i ≤ tk such that |Ci| = |Di| = m
for all i, and Ci <B Cj, Di <A Dj for all i < j.

By Lemma 2 it suffices to find a collection of ε-avoiding pairs {(Ca, Db)} such that b = b(a) is a
monotone increasing function of a.

Lemma 7 (Mirsky). Let (P,<) be a finite poset. Then the length of the largest chain in (P,<) is equal
to the size k of its smallest possible decomposition into antichains.

Claim 8. If points x and y in A are incomparable in <B, they are still comparable with respect to all but
at most one ordering <Db

, 1 ≤ b ≤ tk.

Using this claim we can bound the number of not ε-avoiding pairs and show that at least 6tk2 ε-
avoiding pairs exist. Considering partial order defined by {Ca, Db} < {C ′a, D′b} if a < a′ and b < b′, and
using Mirsky theorem we get the suitable collection as a chain of this partial order.

3 Proof of Theorem 1

Lemma 9. Let s be a positive integer and set K = 8(s
2), M = 9sK, ε = 2−3s−11. Suppose the M-element

point sets A and B form a ε-avoiding pair and A∪B is in general position. Then we can find K pairwise
crossing segments, each connecting a point of A to a point of B.

Prove this lemma by induction on s using Lemma 4. Then use this lemma and Lemma 3 to prove the
theorem.
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