Majority-3SAT (and Related Problems) in Polynomial Time

Shyan Akmal and Ryan Williams

Definitions

Let F be a Boolean formula on variables $\vec{x} = x_1, \dots, x_n$. We denote by #SAT(F) the number of assignments of \vec{x} that satisfy F.

Problems

- THRESHOLDSAT: for a constant $\varrho \in (0,1)$, is it true that $\frac{\#SAT(F)}{2^n} \ge \varrho$?
- MajoritySat: is ThresholdSAT with $\varrho = \frac{1}{2}$.
- GtThresholdSAT: is ThresholdSAT with strict inequality.

We will usually consider the special case of these problems where each clause can contain at most k literals. Then we call these problems Threshold-kSAT, Majority-kSAT, and GtThreshold-kSAT respectively.

Results

- Theorem 1.1 (Main result). For every constant rational $\varrho \in (0,1)$ and every constant $k \geq 2$, there is a deterministic linear-time algorithm that given a k-CNF F determines whether or not $\#SAT(F) \geq \varrho \cdot 2^n$.
- Theorem 1.4. For all $k \leq 3$, GTMAJORITY-KSAT is in P.
- Theorem 1.5. For all $k \ge 4$, GTMAJORITY-KSAT is NP-complete.
- Theorem 1.6. Deciding MAJORITYSAT over k-CNFs with one extra clause of arbitrary width is in P for k = 2, NP-hard for k = 3, and PP-complete for $k \geq 4$.
- Proposition 2.4. Let F be a CNF formula on n variables, construed as a set of clauses. Suppose there is a $\varrho \in (0,1)$ and a subset F' of the clauses of F such that F' contains $r \leq n$ variables and $\#\mathrm{SAT}(F') \leq \varrho \cdot 2^r$. Then $\#\mathrm{SAT}(F) \leq \varrho \cdot 2^n$.
- **Proposition 2.5.** Given a 1-CNF formula F (i.e. F is a conjunction of literals), the number of satisfying assignments to F can be computed in linear time.
- Theorem 3.1. For every rational $\alpha \in (0,1)$, there is an $m \cdot \text{poly}(1/\alpha)$ -time algorithm that, given any 2-CNF formula F on n variables and m clauses, decides whether $\#\text{SAT}(F) \geq \alpha \cdot 2^n$ or not. Furthermore, when $\#\text{SAT}(F) \geq \alpha \cdot 2^n$ is true, the algorithm outputs #SAT(F), along with a decision tree representation for F of $\text{poly}(1/\alpha)$ size. The internal nodes are labeled by variables and leaves are labeled by 1-CNFs.
- Theorem 4.1. For every constant $\varrho \in [1/2, 1]$, we can decide in polynomial time if a given 3-CNF on n variables has at least $\varrho \cdot 2^n$ satisfying assignments.
- Theorem 4.3. For every $\varepsilon \in (0, 1/2]$, we can decide in poly $(1/\varepsilon, n)$ time if a given 3-CNF on n variables has at least $(1/2 + \varepsilon) \cdot 2^n$ satisfying assignments. Moreover, given any 3-CNF with at least $(1/2 + \varepsilon) \cdot 2^n$ satisfying assignments, we can report the exact number of satisfying assignments.
- Lemma 4.4. Let $\varrho > 1/2$, and let S be a maximal disjoint set of k-clauses in a k-CNF F. Suppose F has at least $\varrho \cdot 2^n$ satisfying assignments. For all possible assignments A to the variables of S, and for every induced 2-CNF F_A obtained by assigning A to S, F_A must contain a maximal disjoint set of (k-1)-clauses of size less than $2^k |S| \ln(1/(\varrho 1/2))$.
- Lemma 4.5. Let $\ell \in \{x, \neg x\}$ be a literal, and let

$$S = \{(\ell \vee a_1 \vee b_1), \dots, (\ell \vee a_t \vee b_t), (u \vee v \vee w)\}$$

be a set of clauses with the following properties:

- For all $i, j \in [t]$, a_i and b_j are literals from 2t distinct variables, all of which are different from x.
- The literal ℓ does not appear in $(u \vee v \vee w)$ (however, $\neg \ell$ may appear in $(u \vee v \vee w)$).

Then for all $t \geq 8$, S has less than 2^{r-1} satisfying assignments, where r is the total number of variables occurring in S.