
Majority-3SAT (and Related Problems) in Polynomial

Time
Shyan Akmal and Ryan Williams

Definitions

Let F be a Boolean formula on variables ~x = x1, . . . , xn. We denote by #SAT(F) the number of assignments
of ~x that satisfy F .

Problems

• ThresholdSAT: for a constant % ∈ (0, 1), is it true that #SAT(F)
2n ≥ %?

• MajoritySat: is ThresholdSAT with % = 1
2 .

• GtThresholdSAT: is ThresholdSAT with strict inequality.

We will usually consider the special case of these problems where each clause can contain at most k literals.
Then we call these problems Threshold-kSAT, Majority-kSat, and GtThreshold-kSAT respectively.

Results

• Theorem 1.1 (Main result). For every constant rational % ∈ (0, 1) and every constant k ≥ 2, there is a
deterministic linear-time algorithm that given a k-CNF F determines whether or not #SAT(F) ≥ % · 2n.

• Theorem 1.4. For all k ≤ 3, GtMajority-kSAT is in P.

• Theorem 1.5. For all k ≥ 4, GtMajority-kSAT is NP-complete.

• Theorem 1.6. Deciding MajoritySAT over k-CNFs with one extra clause of arbitrary width is in P
for k = 2, NP-hard for k = 3, and PP-complete for k ≥ 4.

• Proposition 2.4. Let F be a CNF formula on n variables, construed as a set of clauses. Suppose there is a
% ∈ (0, 1) and a subset F ′ of the clauses of F such that F ′ contains r ≤ n variables and #SAT(F ′) ≤ % ·2r.
Then #SAT(F) ≤ % · 2n.

• Proposition 2.5. Given a 1-CNF formula F (i.e. F is a conjunction of literals), the number of satisfying
assignments to F can be computed in linear time.

• Theorem 3.1. For every rational α ∈ (0, 1), there is an m · poly(1/α)-time algorithm that, given any
2-CNF formula F on n variables and m clauses, decides whether #SAT(F) ≥ α · 2n or not. Furthermore,
when #SAT(F) ≥ α·2n is true, the algorithm outputs #SAT(F), along with a decision tree representation
for F of poly(1/α) size. The internal nodes are labeled by variables and leaves are labeled by 1-CNFs.

• Theorem 4.1. For every constant % ∈ [1/2, 1], we can decide in polynomial time if a given 3-CNF on n
variables has at least % · 2n satisfying assignments.

• Theorem 4.3. For every ε ∈ (0, 1/2], we can decide in poly(1/ε, n) time if a given 3-CNF on n variables
has at least (1/2 + ε) · 2n satisfying assignments. Moreover, given any 3-CNF with at least (1/2 + ε) · 2n
satisfying assignments, we can report the exact number of satisfying assignments.

• Lemma 4.4. Let % > 1/2, and let S be a maximal disjoint set of k-clauses in a k-CNF F . Suppose F has
at least % · 2n satisfying assignments. For all possible assignments A to the variables of S, and for every
induced 2-CNF FA obtained by assigning A to S, FA must contain a maximal disjoint set of (k−1)-clauses
of size less than 2k|S| ln(1/(%− 1/2)).

• Lemma 4.5. Let ` ∈ {x,¬x} be a literal, and let

S = {(` ∨ a1 ∨ b1), . . . , (` ∨ at ∨ bt), (u ∨ v ∨ w)}

be a set of clauses with the following properties:

– For all i, j ∈ [t], ai and bj are literals from 2t distinct variables, all of which are different from x.

– The literal ` does not appear in (u ∨ v ∨ w) (however, ¬` may appear in (u ∨ v ∨ w)).

Then for all t ≥ 8, S has less than 2r−1 satisfying assignments, where r is the total number of variables
occurring in S.

1

