Majority-3SAT (and Related Problems) in Polynomial

Time
Shyan Akmal and Ryan Williams

Definitions

Let F be a Boolean formula on variables & = z1,...,z,. We denote by #SAT(F) the number of assignments
of ¥ that satisfy F.

Problems

#SAT(F)

e THRESHOLDSAT: for a constant ¢ € (0,1), is it true that o

> 07
e MAJORITYSAT: is THRESHOLDSAT with ¢ = 3.
e GTTHRESHOLDSAT: is THRESHOLDSAT with strict inequality.

We will usually consider the special case of these problems where each clause can contain at most k literals.
Then we call these problems THRESHOLD-KSAT, MAJORITY-KSAT, and GTTHRESHOLD-KSAT respectively.

Results

e Theorem 1.1 (Main result). For every constant rational ¢ € (0,1) and every constant k > 2, there is a
deterministic linear-time algorithm that given a k-CNF F' determines whether or not #SAT(F) > o - 2™.

e Theorem 1.4. For all £ <3, GTMAJORITY-KSAT is in P.
e Theorem 1.5. For all k£ > 4, GTMAJORITY-KSAT is NP-complete.

e Theorem 1.6. Deciding MAJORITYSAT over k-CNFs with one extra clause of arbitrary width is in P
for k = 2, NP-hard for k£ = 3, and PP-complete for k& > 4.

e Proposition 2.4. Let F' be a CNF formula on n variables, construed as a set of clauses. Suppose there is a
0 € (0,1) and a subset F’ of the clauses of F' such that F’ contains r < n variables and #SAT(F’) < p-2".
Then #SAT(F) < p-2".

e Proposition 2.5. Given a 1-CNF formula F' (i.e. F is a conjunction of literals), the number of satisfying
assignments to I’ can be computed in linear time.

e Theorem 3.1. For every rational o € (0,1), there is an m - poly(1/«)-time algorithm that, given any
2-CNF formula F' on n variables and m clauses, decides whether #SAT(F') > « - 2™ or not. Furthermore,
when #SAT(F) > «-2" is true, the algorithm outputs #SAT(F’), along with a decision tree representation
for F' of poly(1/c) size. The internal nodes are labeled by variables and leaves are labeled by 1-CNFs.

e Theorem 4.1. For every constant ¢ € [1/2,1], we can decide in polynomial time if a given 3-CNF on n
variables has at least g - 2" satisfying assignments.

e Theorem 4.3. For every ¢ € (0,1/2], we can decide in poly(1/e,n) time if a given 3-CNF on n variables
has at least (1/2 + ¢) - 2™ satisfying assignments. Moreover, given any 3-CNF with at least (1/2 +¢) - 2"
satisfying assignments, we can report the exact number of satisfying assignments.

e Lemma 4.4. Let 9 > 1/2, and let S be a maximal disjoint set of k-clauses in a k-CNF F'. Suppose F has
at least p - 2" satisfying assignments. For all possible assignments A to the variables of S, and for every
induced 2-CNF F4 obtained by assigning A to S, F4 must contain a maximal disjoint set of (k—1)-clauses
of size less than 2%|S|In(1/(0 — 1/2)).

e Lemma 4.5. Let £ € {z, -z} be a literal, and let
S={(lVvarVb),....,¢(VarVb),(uVovVuw)}
be a set of clauses with the following properties:

— For all 4, j € [t], a; and b; are literals from 2t distinct variables, all of which are different from z.
— The literal ¢ does not appear in (v V vV w) (however, =¢ may appear in (u VvV w)).
Then for all £ > 8, S has less than 27! satisfying assignments, where r is the total number of variables

occurring in S.
1

