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In the following, G always denotes a cubic, i.e. 3-regular, graph and ¢ a 3-edge-
coloring of G.

A Kempe switch of a 3-edge-coloring of a cubic graph G on a bicolored cycle C' swaps
the colors on C' and gives rise to a new 3-edge-coloring of G. Two 3-edge-colorings of G
are Kempe equivalent if they can be obtained from each other by a sequence of Kempe
switches.

The 3-edge-colorability problem for cubic graphs is NP-complete, while every cubic
bipartite graph admits a 3-edge-coloring.

A surface F? is a connected compact 2-dimensional manifold without boundary. A
closed curve v on F? is essential if v does not bound a 2-cell region on F2. Otherwise,
~ is contractible. A closed curve v on F? is one-sided if a tubular neighborhood of 7 is
a Mobius strip; otherwise it is two-sided. When the surface F?2 is the projective plane, a
closed curve is essential if and only if it is one-sided.

Lemma 1. Let v, and o be two closed curves on the projective plane. Then v, and
are both essential (i.e. one-sided) if and only if they intersect transversally an odd number
of times.

A triangulation of a surface F? is a graph embedded on F? with each face triangular.
A facial walk in a graph embedded on a surface is the boundary walk of some face.

For a graph G embedded on a surface, the dual of GG is denoted by G* . For § C E(G),
we denote by S* the set of dual edges e* in G* taken over all edges e in S.

A 2-factor is a spanning subgraph in which every vertex has degree exactly 2.

Lemma 2. Let G be a graph embedded on the projective plane, and let T be a 2-factor
of G. Then T satisfies exactly one of the following: (I) All cycles in T are contractible,
and T is 2-face-colorable. (II) T contains exactly one essential cycle, and T is not 2-
face-colorable

We consider ¢ as a mapping from E(G) to Zy x Zs — {(0,0)}. It produces a mapping
fo : V(G*) = Zy x Zy of dual triangulation G* of G as follows. First, fix a vertex of
G* and color it by (0, 0), and then we extend the colors using the following rule: Let h
be already colored and hg is adjacent to h not colored yet with e* the edge connecting
them in G* . Then we color hy so that f,(h0) = f,(h) + ¢(e), where + means the sum
on Zy X Zy. It has been shown that f, is well-defined and indeed a 4-vertex-coloring of
G*. Given an 4-edge-coloring f of G* we can obtain a 3-edge coloring ¢ of G by using
opposite rules.

Let X C E(G) and M be a perfect matching of G. Then we define the type of X as
ox(M) = |X|—|X N M|(mod 2) with ox (M) € {0,1}.

Let a, b, c denote the colors of ¢ and M, stands for the edges colored by a color x for
x € {a,b,c}. Note that each of M,, M, M, is a perfect matching in G. We define the
type with respect to X, denoted by ox(¢), of ¢ as the triple of ox(M,) for z € a,b, c.

Proposition 3. For a 3-edge-coloring ¢ of a cubic graph G and a subset X of E(G), we
have ox () = (0,0,0),(1,1,0),(1,0,1), or (0,1,1).
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Theorem 4. Let G be a cubic graph embedded on a surface. A 3-edge-coloring ¢ of
G produces a j-vertex-coloring of the dual G* if and only if op(p) = (0,0,0) for every
essential cycle D* in G* .

Theorem 5. If two 3-edge-colorings of a cubic graph embedded on the projective plane
are Kempe equivalent, then they have the same type.

Given ¢; and @9 3-edge-colorings, we can define their signature as follows. For a
vertex v and ey, es, e3 edges incident with v, 7, is a permutation on three elements such
that m,1(e;) = pa(e;) for any 1 < ¢ < 3. The signature between ¢; and s is then
sign(p1, p2) = ey (@)sign(m,).

An edge e is said to be singular (with respect to @) if for a face h containing e, the
two edges incident with h and adjacent to e have the same color by ¢: Otherwise, e is
said to be non-singular. We denote NS, (¢) the non-singular edges of color z in coloring
®.

The signature of a 3-edge-coloring ¢ with respect to essential cycle D* of G*, denoted
by signp(¢) is defined as follows. After deleting the edges of D, we obtain a spanning
subgraph G’ contained on a disc. On this disc, u,v have the same consistent clockwise
rotation if and only if uv ¢ D. If colors a, b, ¢ occur on the edges incident with v along
this rotation, we let sign(m,) = +1. Otherwise, sign(m,) = —1.

signp () = HWGV(G)sign(m) )

Theorem 6. Fvery cubic bipartite graph G embedded on the projective plane has an
odd 3-edge-coloring. Moreover, it has an even 3-edge-coloring if and only if the dual
triangulation G* has chromatic number at most 4.

Theorem 7. Let G be a cubic bipartite graph embedded on the projective plane, and let
D* be an essential cycle in G* . Then G admits a perfect matching M with op(M) = 1.

A canonical 3-edge-coloring of a cubic graph embedded on a surface is a 3-edge-coloring
such that for each color z, either NS, (y)* consists of only essential cycles or is the empty
set.

Lemma 8. Let G be a cubic even map on a surface. For every 3-edge-coloring ¢ of G,
there exists a canonical 3-edge-coloring po such that g is Kempe equivalent to ¢ and for
every cycle D* in G* , op(p) = (0,0,0) if and only if op(pe) = (0,0,0).

For H an even map on the projective plane, it’s face subdivision F'S(H) is an Eulerian
triangulation of H created by adding a vertex into each face and connecting it to the
vertices of the corresponding facial walk. For an Eulerian triangulation K, we say that
vertex set U is a color factor of K, if there exists an even map H such that K = F'S(H)
and U = V(K) - V(H).

Theorem 9. Let G be a cubic bipartite graph embedded on the projective plane. Then
any two odd 3-edge-colorings in G are Kempe equivalent.

Theorem 10. All 3-edge-colorings of a cubic bipartite projective-planar graph G are
pairwise Kempe equivalent if and only if G has an embedding in the projective plane such
that the chromatic number of the dual triangulation G* is at least 5.

Corollary 11. Let G be a 3-edge-colorable cubic graph embedded on the projective plane.
If the dual G* is not J-vertex-colorable, then G is 3-list- edge-colorable.



