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In the following, G always denotes a cubic, i.e. 3-regular, graph and ϕ a 3-edge-
coloring of G.

A Kempe switch of a 3-edge-coloring of a cubic graph G on a bicolored cycle C swaps
the colors on C and gives rise to a new 3-edge-coloring of G. Two 3-edge-colorings of G
are Kempe equivalent if they can be obtained from each other by a sequence of Kempe
switches.

The 3-edge-colorability problem for cubic graphs is NP-complete, while every cubic
bipartite graph admits a 3-edge-coloring.

A surface F 2 is a connected compact 2-dimensional manifold without boundary. A
closed curve γ on F 2 is essential if γ does not bound a 2-cell region on F 2. Otherwise,
γ is contractible. A closed curve γ on F 2 is one-sided if a tubular neighborhood of γ is
a Möbius strip; otherwise it is two-sided. When the surface F 2 is the projective plane, a
closed curve is essential if and only if it is one-sided.

Lemma 1. Let γ1 and γ2 be two closed curves on the projective plane. Then γ1 and γ2
are both essential (i.e. one-sided) if and only if they intersect transversally an odd number
of times.

A triangulation of a surface F 2 is a graph embedded on F 2 with each face triangular.
A facial walk in a graph embedded on a surface is the boundary walk of some face.

For a graph G embedded on a surface, the dual of G is denoted by G∗ . For S ⊆ E(G),
we denote by S∗ the set of dual edges e∗ in G∗ taken over all edges e in S.

A 2-factor is a spanning subgraph in which every vertex has degree exactly 2.

Lemma 2. Let G be a graph embedded on the projective plane, and let T be a 2-factor
of G. Then T satisfies exactly one of the following: (I) All cycles in T are contractible,
and T is 2-face-colorable. (II) T contains exactly one essential cycle, and T is not 2-
face-colorable

We consider ϕ as a mapping from E(G) to Z2×Z2−{(0, 0)}. It produces a mapping
fϕ : V (G∗) → Z2 × Z2 of dual triangulation G∗ of G as follows. First, fix a vertex of
G∗ and color it by (0, 0), and then we extend the colors using the following rule: Let h
be already colored and h0 is adjacent to h not colored yet with e∗ the edge connecting
them in G∗ . Then we color h0 so that fϕ(h0) = fϕ(h) + ϕ(e), where + means the sum
on Z2 × Z2. It has been shown that fϕ is well-defined and indeed a 4-vertex-coloring of
G∗. Given an 4-edge-coloring f of G∗ we can obtain a 3-edge coloring ϕf of G by using
opposite rules.

Let X ⊆ E(G) and M be a perfect matching of G. Then we define the type of X as
σX(M) ≡ |X| − |X ∩M |(mod 2) with σX(M) ∈ {0, 1}.

Let a, b, c denote the colors of ϕ and Mx stands for the edges colored by a color x for
x ∈ {a, b, c}. Note that each of Ma,Mb,Mc is a perfect matching in G. We define the
type with respect to X, denoted by σX(ϕ), of ϕ as the triple of σX(Mx) for x ∈ a, b, c.

Proposition 3. For a 3-edge-coloring ϕ of a cubic graph G and a subset X of E(G), we
have σX(ϕ) = (0, 0, 0), (1, 1, 0), (1, 0, 1), or (0, 1, 1).
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Theorem 4. Let G be a cubic graph embedded on a surface. A 3-edge-coloring ϕ of
G produces a 4-vertex-coloring of the dual G∗ if and only if σD(ϕ) = (0, 0, 0) for every
essential cycle D∗ in G∗ .

Theorem 5. If two 3-edge-colorings of a cubic graph embedded on the projective plane
are Kempe equivalent, then they have the same type.

Given ϕ1 and ϕ2 3-edge-colorings, we can define their signature as follows. For a
vertex v and e1, e2, e3 edges incident with v, πv is a permutation on three elements such
that πvϕ1(ei) = ϕ2(ei) for any 1 ≤ i ≤ 3. The signature between ϕ1 and ϕ2 is then
sign(ϕ1, ϕ2) = Πv∈V (G)sign(πv).

An edge e is said to be singular (with respect to ϕ) if for a face h containing e, the
two edges incident with h and adjacent to e have the same color by ϕ: Otherwise, e is
said to be non-singular. We denote NSx(ϕ) the non-singular edges of color x in coloring
ϕ.

The signature of a 3-edge-coloring ϕ with respect to essential cycle D∗ of G∗, denoted
by signD(ϕ) is defined as follows. After deleting the edges of D, we obtain a spanning
subgraph G′ contained on a disc. On this disc, u, v have the same consistent clockwise
rotation if and only if uv /∈ D. If colors a, b, c occur on the edges incident with v along
this rotation, we let sign(πv) = +1. Otherwise, sign(πv) = −1.

signD(ϕ) = Πv∈V (G)sign(πv).

Theorem 6. Every cubic bipartite graph G embedded on the projective plane has an
odd 3-edge-coloring. Moreover, it has an even 3-edge-coloring if and only if the dual
triangulation G∗ has chromatic number at most 4.

Theorem 7. Let G be a cubic bipartite graph embedded on the projective plane, and let
D∗ be an essential cycle in G∗ . Then G admits a perfect matching M with σD(M) = 1.

A canonical 3-edge-coloring of a cubic graph embedded on a surface is a 3-edge-coloring
such that for each color x, either NSx(ϕ)∗ consists of only essential cycles or is the empty
set.

Lemma 8. Let G be a cubic even map on a surface. For every 3-edge-coloring ϕ of G,
there exists a canonical 3-edge-coloring ϕ0 such that ϕ0 is Kempe equivalent to ϕ and for
every cycle D∗ in G∗ , σD(ϕ) = (0, 0, 0) if and only if σD(ϕ0) = (0, 0, 0).

For H an even map on the projective plane, it’s face subdivision FS(H) is an Eulerian
triangulation of H created by adding a vertex into each face and connecting it to the
vertices of the corresponding facial walk. For an Eulerian triangulation K, we say that
vertex set U is a color factor of K, if there exists an even map H such that K = FS(H)
and U = V (K)− V (H).

Theorem 9. Let G be a cubic bipartite graph embedded on the projective plane. Then
any two odd 3-edge-colorings in G are Kempe equivalent.

Theorem 10. All 3-edge-colorings of a cubic bipartite projective-planar graph G are
pairwise Kempe equivalent if and only if G has an embedding in the projective plane such
that the chromatic number of the dual triangulation G∗ is at least 5.

Corollary 11. Let G be a 3-edge-colorable cubic graph embedded on the projective plane.
If the dual G∗ is not 4-vertex-colorable, then G is 3-list- edge-colorable.
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