Breaking the degeneracy barrier for coloring graphs with no K_t minor

Authors: Sergey Norin, Luke Postle, Zi-Xia Song

Conjecture (Hadwiger). For every integer $t \geq 1$, every graph with no K_t minor is (t-1)-colorable.

Theorem 1.3. (Kostochka, Thomason) Every graph with no K_t minor is $\mathcal{O}(t\sqrt{\log t})$ -degenerate (and colorable).

Theorem 1.4. For every $\beta > \frac{1}{4}$, every graph with no K_t minor is $\mathcal{O}(t(\log t)^{\beta})$ -colorable.

Theorem 2.4. For every $\delta > 0$ there exists $C = C_{2.4}(\delta) > 0$ such that for every D > 0 the following holds. Let G be a graph, $d(G) \geq C$, s = D/d(G). Then G contains at least one of the following:

- (i) a minor J, d(J) > D
- (ii) a subgraph H, $v(H) \leq Cs^{\delta}D^2/d(G)$ and $d(H) \geq d(G)/(Cs^{\delta})$

Theorem 2.6. There exists $C_{2.6} > 1$ satisfying the following. Let G be a graph with $\kappa(G) \geq Ct(\log t)^{\frac{1}{4}}$, and let $r \geq \sqrt{\log t}/2$. If there exist vertex-disjoint subgraphs H_1, \ldots, H_r of G such that $d(H_i) \geq Ct(\log t)^{\frac{1}{4}}$ for each i, then G has a K_t minor.

Theorem 4.2. Let $l \geq 2$ be an integer, and let $\epsilon_0 \in (0, \frac{1}{2l})$ and $d_0 \geq 1/\epsilon_0$ be real. Let G = (A, B) be a bipartite graph such that |A| > l|B| and every vertex in A has at least d_0 neighbors in B. Then G contains at least one of the following:

- (i) a subgraph H with $v(H) \leq 3d_0$ and $e(H) \geq \epsilon_0^2 d_0^2/2$
- (ii) an (l+1)-bounded minor G' with $d(G') \ge \frac{l}{2}(1-2l\epsilon_0)d_0$

Theorem 4.4. Let $k \geq l \geq 2$ be integers. Let $\epsilon \in (0, \frac{1}{4k})$. Let G be a graph with $d = d(G) \geq 1/\epsilon$. Then G contains at least one of the following:

- (i) a subgraph H with $v(H) \leq 3k^3d$ and $e(H) \geq \epsilon^2d^2/2$
- (i) a bipartite subgraph H = (X, Y) with |X| > l|Y| such that every vertex in X has at least $(1 2k\epsilon)d$ neighbors in Y
- (iii) an k-bounded minor G' with $d(G') \geq \frac{k}{8l}(1-2k\epsilon)d$

Lemma 3.2. Let G be a graph with $d = d(G) \ge 3$. Then G has a minor H such that $v(H) \le d+2$ and $2\delta(H) \ge v(H) + 0.3d - 2$.

Lemma 3.3. Let $n \geq 0$, $k \geq 2$ and $h \geq n + 3k/2$ be integers. Let G be a graph with $\kappa(G) \geq k$ containing vertex-disjoint non-empty connected subgraphs C_1, \ldots, C_h such that each of them is non-adjacent to at most n others. Let $S = \{s_1, \ldots, s_k\} \subset V(G)$. Then G contains vertex-disjoint non-empty connected subgraphs D_1, \ldots, D_m where $m = h\lfloor k/2 \rfloor$ such that $s_i \in V(D_i)$ for each $i \in [k]$ and every element of $\{D_1, \ldots, D_m\}$ is non-adjacent to at most n subgraphs among D_{k+1}, \ldots, D_m .

Lemma 3.4. There exists $C = C_{3.4} > 0$ satisfying the following. Let s be a positive integer, let G be a graph with $\kappa(G) \geq Cs$, and let S_1, \ldots, S_k be non-empty disjoint subsets of V(G) such that $\sum_{i=1}^k |S_i| \leq s$. Then there exist vertex-disjoint connected subgraphs C_1, \ldots, C_k of G such that $S_i \subset V(C_i)$ for every $i \in [k]$.

Lemma 3.5. There exists $C = C_{3.5} > 0$ satisfying the following. Let G be a graph, let $l \geq s \geq 2$ be positive integers. Let $s_1, \ldots, s_l, t_1, \ldots, t_l, r_1, \ldots, r_s \in V(G)$ be distinct, except possibly $s_i = t_i$ for some $i \in [l]$. If

$$\kappa(G) \ge Cmax\{l, s\sqrt{\log s}\}$$

then there exists a K_s model \mathcal{M} in G rooted at $\{r_1, \ldots, r_s\}$ and an $(s_i, t_i)_{i \in [l]}$ -linkage \mathcal{P} in G such that \mathcal{M} and \mathcal{P} are vertex-disjoint.