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1st semester

I. Preliminaries

1. Basics

1.1. Logic. The logical connectives “and” and “or” will be as a rule
expressed by words, while for the implication we will use the standard symbol
“⇒”. Negation of a statement A will be expressed by “nonA”. The reader
is certainly acquainted with the fact that

“A ⇒ B” is equivalent with “nonB ⇒ nonA”.

This is used as a standard trick in proofs.

The quantifier ∃ in “∃x ∈M,A(x)” indicates that there exists an x ∈M
such that A(x) holds; often the M is obvious and we write just ∃xA(x).
Similarly, the quantifier “∀ in ∀x ∈ M,A(x)” indicates that A(x) holds for
all x ∈M ; again, if the range M is obvious we often write just ∀xA(x).

1.2. Sets. x ∈ A indicates that x is an element of a set A.
We will use the standard symbols for unions:

A ∪B, A1,∪ · · · ∪ An,
⋃
i]inJ

Ai

and for intersections:

A ∩B, A1,∩ · · · ∩ An,
⋂
i]inJ

Ai.

The difference of sets A,B, that is, the set of all the elements in A that are
not in B is denoted by

ArB.

Recall the DeMorgan formulas

Ar
⋃
i∈J

Bi =
⋂
i∈J

(ArBi) and Ar
⋂
i∈J

Bi =
⋃
i∈J

(ArBi).

1



The set of all x that satisfy a condition P is denoted by

{x |P (x)}.

Thus for instance A ∪ B = {x |x ∈ A or x ∈ B}, or
⋂
i∈J Ai = {x | ∀i ∈

J, x ∈ Ai}.
The cartesian product

A×B
is the set of all pairs (a, b) with a ∈ A and b ∈ B. We will also work with
cartesian products

A1 × · · · × An,
the systems of n-tuples (a1, . . . , an), ai ∈ Ai, and later on also with∏

i∈l

Ai = {(ai)i∈J | ai ∈ Ai}.

The formula A ⊆ B (read “A is a subset of B”) indicates that a ∈ A
implies a ∈ B.

The set of all subsets of a set A (“the powerset of A”) is often denoted by

expA or P(A).

1.3. Equivalence. Decomposition into equivalence classes. An
equivalence E on a set X is a reflective, symmetric and transitive relation
E ⊆ X ×X, that is, a relation such that

∀x, xEx (reflexivity)

∀x, y, xEy and yEx implies x = y (symmetry)

∀x, y, z xEy and yEz implies xEz (transitivity).

(We write xEy for (x, y) ∈ E). Set

Ex = {y | yEx}.

These sets are called the equivalence classes of E. We have

1.3.1. Proposition. Each equivalence on a set X yields a disjoint
decomposition into its equivalence classes. On the other hand, each disjoint
decomposition

X =
⋃
i∈J

Xi
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gives rise to an equivalence defined by xEy iff ∃i, x, y ∈ Xi.
Proof. The second statement is obvious. For the first one we have to

prove that for any two x, y we have either Ex = Ey or Ex ∩ Ey = ∅. Now
if z ∈ Ex ∩ Ey then xEzEy, hence xEy, and then, by transitivity again,
z ∈ Ex iff z ∈ Ey. �

Note that in fact we have here a one-to-one correspondence between all
equivalences on X and all disjoint decompositions of X.

1.4. Mappings. A mapping f : A → B is the following collection of
data:

(1) a set X, called the domain of f ,

(2) a set Y , called the range of f ,

(3) and a subset f ⊆ X × Y such that

- for each x ∈ X there is a y ∈ Y such that (x, y) ∈ F , and

- if (x, y) ∈ f and (x, z) ∈ f then x = y.

The unique y from (3) is usually denoted by f(x) (one sometimes speaks of
the value of f in the argument x). It can often be expressed by a formula
(for instance f(x) = x2); we have to keep in mind, however, that the domain
and range are essential: sending an integer x to the integer x2 is a different
function than sending a real x to the real x2, and sending sending a real x
to the real x2 with the range restricted to the non-negative real numbers is
yet another one.

A mapping f : X → Y is one-to-one if

∀x, y ∈ X, (x 6= y ⇒ f(x) 6= f(y));

it is onto if
∀y ∈ Y ∃x ∈ X f(x) = y.

Note the importance of the information what the range Y is for the latter
property.

The identity mapping idX : X → X is defined by id(x) = x.

The image of a subset A ⊆ X under a mapping f : X → Y , that is,
{f(x) |x ∈ A} will be denoted by f [A], and the preimage {x | f(x) ∈ B} of
B ⊆ Y will be denoted by f−1[B].
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1.4.1. Composition of mappings. Given mappings f : X → Y, g :
Y → X we obtain their composition

g ◦ f : X → Z

by setting (g ◦ f)(x) = g(f(x)).
The inverse of a mapping f : X → Y is a mapping g : Y → X such that

gf = idX and fg = idY .

Note that if f has an inverse then it is one-to-one and onto; on the other
hand, each one-to-one onto map has a (unique) inverse.

1.4.1. Functions. Mappings f : X → Y where the range Y is a subset
of a system of numbers (natural numbers, integers, rationals, reals, complex
numbers, – see below) are often called functions. We will be in particular
concerned with real functions, that is, Y ⊆ R. Moreover, in the first months
we will have also Z ⊆ R, and speak of real functions of one real variable.

2. Numbers.

2.1. Natural numbers. They are supposed to be well known, but let
us recall a formal approach (Peano axioms). We have a set

N

endowed, first, with a distinguished element 0 and a mapping σ : N → N
(the successor function; we will usually write simply n′ for σ(n)) such that

(1) for each n 6= 0 there is precisely one m such that m′ = n,

(2) 0 is not a successor,

(3) if a statement A holds for 0 (symbolically, A(0)) and if A(n) ⇒ A(n′)
then ∀nA(n).

(The last is called the axiom of induction.)
Further, there are operations + and · (the latter will be as a rule indicated

simply by juxtaposition) such that

n+ 0 = n, n+m′ = (n+m)′,

n · 0 = 0, nm′ = nm+ n.
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Finally we define an order n ≤ m by setting

n ≤ m iff ∃k,m = n+ k.

2.1.1. This results in a system (N,+, ·, 0, 1,≤) (1 is 0′, the successor of
0) satisfying

n+ 0 = n, n · 1 = n,

m+ (n+ p) = (m+ n) + p, m(np) = (mn)p (associativity rules)

m+ n = n+m, mn = nm (commutativity rules)

m(n+ p) = mn+mp (distributivity)

n ≤ n, m ≤ n and n ≤ m implies n = m (reflexivity and antisymmetry)

m ≤ n and n ≤ p implies m ≤ p (transitivity)

∀m,n either n ≤ m or m ≤ n

m ≤ n implies n+ p ≤ m+ p

m ≤ n implies np ≤ mp.

It is an amusing exercise to prove (at least some) of these rules by induc-
tion from the axioms above.

2.2. Integers. The set of integers

Z

is obtained augmenting N by negative numbers. The reader can try to find
a formal construction (for instance one can add new elements (n,−) with
n ∈ N, n 6= 0, and define suitably the operations and order (the only point in
which one has to do something not quite obvious is the definition of addition).
One obtains a system

Z

where all the rules from 1.1 hold with the exception of the last one which
has to be replaced by

x ≤ y and z ≥ 0 ⇒ xz ≤ yz.

On the other hand one has one more rule, namely

∀x ∃y such that x+ y = 0

5



which allows, besides adding and multiplying, also subtracting.

2.3. Rational numbers. We can already add, multiply and subtract.
The arithmetic operation missing is unrestricted division. One cannot have
quite unrestricted division (from rules like those above one sees that 0 · x =
0 hence dividing by 0 does not make much sense. But this will be the
only exception in the following system of rational numbers. First take (for
instance)

X = {(x, y) |x, y ∈ Z, y 6= 0}
and define

(x, y) + (u, v) = (xv + yu, uv) and (x, y)(u, v) = (xu, yv)

Then consider the equivalence relation

(x, y) ∼ (u, v) if and only if xv = uy

and set
Q = X/ ∼ .

It is easy tu prove that if

(x, y) ∼ (x′, y′) and (u, v) ∼ (u′, v′)

then

(x, y) + (u.v) ∼ (x′, y′) + (u′, v′) and (x, y)(u, v) ∼ (x′.y′)(u′, v′)

(prove it as a simple exercise) and that this allows for defining addition and
multiplication on Q, and that we then have, for the equivalence classes (0 is
the equivalence class of (0, n) and 1 is the equivalence class of (n, n))

x+ 0 = n, x · 1 = x,

x+ (y + z) = (x+ y) + z, x(yz) = (xy)z (associativity rules)

x+ y = y + x. xy = yx (commutativity rules)

x(y + z) = xz + yz (distributivity)

∀x∃y, x+ y = 0

∀x 6= 0∃y, xy = 1.

Systems satisfying these rules are called commutative fields.
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Furthermore one can define a relation ≤ by

(x, y) ≤ (u, v) for y, v > 0 by xv ≤ yu

which results in an order on Q satisfying

x ≤ x, x ≤ y and y ≤ x implies x = y (reflexivity and antisymmetry)

x ≤ y and y ≤ z implies x ≤ z (transitivity)

∀x, y either x ≤ y or y ≤ x

x ≤ y implies x+ z ≤ y + z

x ≤ y and z > 0 implies xz ≤ yz.

On speaks of an ordered (commutative) field.
It is perhaps not necessary to recall the standard use of the symbol

p

q

for the equivalence class containing (p, q).

2.4. Rational numbers are not quite satisfactory. So now we have
a system in which we can add, subtract, multiply and divide. Also, it seems
to be ordered in a satisfactory way (though it will turn out that improving
the order will be the key to solving difficulties).

However, already the old Greeks observed a serious trouble. Suppose you
would like to attach lenghts to the segments in natural geometrical construc-
tions. Inevitably you will come to the task to determine square roots. And
this one cannot do in the realm of rational numbers.

Suppose
√

2, a number x such that x2 = 2, can be expressed as a rational
number, that is, we have integers p, q such that(

p

q

)2

= 2.

We can assume that the integers p, q are coprime (that is, have no non-trivial
divisor).

We have
p2

q2
= 2, that is, p2 = 2q2

7



and hence p has to be even. But then p2 is divisible by 4, which makes also
q even and hence p, q are both divisible by 2, a contradiction.

2.5. Order, suprema and infima. A linear order on a set X is a
relation ≤ satisfying

x ≤ x (reflexivity)

x ≤ y and y ≤ x implies x = y (antisymmetry)

x ≤ y and y ≤ z implies x ≤ z (transitivity)

∀x, y either x ≤ y or y ≤ x (linearity)

If we require just reflexivity, antisymmetry and transitivity we speak of a
partial order.

An upper bound of a subset M of a partially ordered set (X,≤) is an
element b such that

∀x ∈M, x ≤ b;

M is said to be bounded (from above) if there is an upper bound of M .
Similarly, we speak of a lower bound b of M if

∀x ∈M, x ≥ b,

and M is said to be bounded (from below) if there is a lower bound of M .
Very often it is obvious whether the boundedness is required from above

or from below and we speak just of a bounded set.
A supremum of a subset M ⊆ (X,≤) is the least upper bound of M

(needless to say, it does not have to exist). If it exists, it is denoted by

supM.

More explicitly, s ∈ X is a supremum of M if

(1) for all x ∈M , x ≤ s, and

(2) if x ≤ y for all x ∈M then s ≤ y.

In a linearly ordered set this is equivalent with

(1) for all x ∈M , x ≤ s, and

(2) if y < s then there exists an x ∈M such that y < x.

8



The second formulation has its advantages, and we will use it more often
than the first one.

Similarly, an infimum of M is the greatest lower bound of M . If it exists,
it is denoted by

inf M.

More explicitly, i ∈ X is an infimum of M if

(1) for all x ∈M , x ≥ i, and

(2) if x ≥ y for all x ∈M then i ≥ y

and in a linearly ordered set this is equivalent with

(1) for all x ∈M , x ≥ i, and

(2) if y > i then there exists an x ∈M such that y > x.

Obviously, a supremum resp. infimum is uniquely determined (if it exists).

2.5.1. Example. Recall the trouble with the square root of 2 in 4. Note
that in Q the set {x | 0 ≤ x, x2 ≤ 2} is bounded (from above) but has no
supremum. Similarly, {x | 0 ≤ x, x2 ≥ 2} is bounded (from below) but has
no infimum.

2.5.2. Exercise. Prove that for linearly ordered sets the two variants of
definitions of supremum resp. infimum are indeed equivalent. How do you
use the linearity requirement? Why is it necessary?

2.6. Real numbers. The system of real numbers

R

as we will use them, is a completion (in more than one sense of the word) of
Q. It is an ordered commutative field in which

every non-empty (from above) bounded subset has a supremum. (sup)

In working with reals we will use just the properties listed in 3 and (sup).

2.6.1. Proposition. In R every non-empty (from below) bounded subset
has an infimum.

9



Proof. Let M be non-empty and bounded from below. Set

N = {x |x is a lower bound of M}.

Since M is bounded from below, N is non-empty. Since M is non-empty, N
is bounded from above (each y ∈ M is an upper bound of N). Hence there
exists

i = supN.

Now since each x ∈M is an upper bound of N , i ≤ x for all x ∈M . On the
other hand, if y is a lower bound of M , y is in N and hence y ≤ i = supN .
�

3. Real numbers as (Euclidean) line.

3.1. Absolute value. Recall the absolute value of a real number

|a| =

{
a if a ≥ 0,

−a if a ≤ 0

3.1.1. Obviously we have

Observation. |a+ b| ≤ |a|+ |b|.
This inequality, called triangle inequality will be very often used in proofs,

usually without specific mentioning.

3.2. The metric structure of R: the real line. The system of real
numbers will be endowed with the distance

|x− y|.

Thus we can view it as (a.o.) a Euclidean line.
Note that this is where the expression “triangle inequality” comes from:

setting a = x− y and b = y − z we obtain from 3.1.1

|x− z| ≤ |x− y|+ |y − z|

(that is, dist(x, z) ≤ dist(x, y) + dist(y, z)).

3.3. Note: Summary. Realize that the system R is quite an involved
structure. It is

10



� a commutative field (algebra with addition, multiplication, subtraction
and division),

� a linearly ordered set, and

� a (metric) space.

3.4. Aside: complex (Gauss) plane. The triangle inequality on the
line is of course a very simple matter. Let us present a more involved one.
We will not need complex nimbers for some time, but let us discuss for a
moment their geometric structure. For a complex number a = x + iy we
have the complex conjugate a = x− iy and the absolute value

|a| =
√
a · a =

√
x2 + y2.

Note that if we view a complex number x + iy as the point (x, y) in the
Euclidean plane we have |a| the standard distance from (0.0), and

|a− b|
the standard Pythagorean distance of points a and b. The system of complex
numbers viewed in this perspective is called the Gauss plane. We have

3.4.1. Proposition. For the absolute value of complex numbers one has

|a+ b| ≤ |a|+ |b|.
Proof. Let a = a1 + ia2 and b = b1 + ib2. We can assume b 6= 0. For any

real number λ we have 0 ≤ (aj +λbj)
2 = a2j + 2λajbj +λ2bj, j = 1, 2. Adding

these inequalities, we obtain

0 ≤ |a|2 + 2λ(a1b1 + a2b2) + λ2|b|2.
Setting λ = −a1b1+a2b2

|b|2 yields

0 ≤ |a|2 − 2
(a1b1 + a2b2)

2

|b|2
+

(a1b1 + a2b2)
2

|b|4
|b|2 = |a|2 − (a1b1 + a2b2)

2

|b|2

and hence (a1b1 + a2b2)
2 ≤ |a|2|b|2. Consequently,

|a+ b|2 = (a1 + b1)
2 + (a2 + b2)

2 = |a|2 + 2(a1b1 + a2b2) + |b|2 ≤
≤ |a|2 + 2|a||b|+ |b|2 = (|a|+ |b|)2. �

3.4.2. There are proofs concerning complex numbers that are formally
literal repetitions of proofs concerning real ones, but depending on the tri-
angle inequalities. Note that the complex variant thus proved may be a
considerably deeper fact.
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II. Sequences of real numbers.

1. Sequences and subsequences

1.1. A(n infinite) sequence is an array

x0, x1, . . . , xn, . . . .

Thus it is, in fact, a mapping x : N → R written as a “table”, that is a
mapping given by the formula x(n) = xn.

Note. Indexing by 0, 1, 2, . . . is not essential, the order in the array is.
We can have a sequence

x1, x2, . . . , xn, . . .

or
x1, x4, . . . , xn2 , . . .

etc.; if we wish to see them as tables of mappings as mentioned, we then
have, say, x(n) = xn+1, or x(n) = x(n+1)2 etc.. See subsequences below that
are, of course, themselves sequences.

1.1.1, Our sequences will be mostly infinite but let it be noted that one
also speaks of finite sequences

x1, x2, . . . , xn

and such.

1.2. Subsequences. A subsequence of a sequence

x0, x1, . . . , xn, . . .

is any sequence
xk0 , xk1 , . . . , xkn , . . .

with kn natural numbers such that

k0 < k1 < · · · < kn < · · · .

Viewing a sequence as a mapping x : N→ R as mentioned above we see that
a subsequence is a composition x◦k with k : N→ N increasing, that is, such
that m < n implies k(m) < k(n).

12



1.2.1. Notation. A sequence x1, x2, . . . will be denoted by

(xn)n;

thus the subsequence above will be (xkn)n.

1.3. A sequence (xn)n is said to be increasing, non-decreasing, non-
increasing, decreasing, respectively if

m < n ⇒ xm < xn, xm ≤ xn, xm ≥ xn, xm > xn respectively.

2. Convergence. Limit of a sequence

2.1. Limit. We say that a number L is a limit of a sequence (xn)n and
write

lim
n
xn = L

if
∀ε > 0 ∃n0 such that ∀n ≥ n0, |xn − L| < ε. (∗)

We than say that (xn)n converges to L, or, without specifying L, that it is
convergent. Otherwise we speak of a divergent sequence.

Using the symbol limn xn automatically includes stating that the limit
exists.

2.1.1. The following formula is obviously equivalent to (∗).

∀ε > 0∃n0 such that ∀n ≥ n0, L− ε < xn < L+ ε.

It is easy to visualise (for sufficiently large n, xn is in an arbitrarily small
“ε-neighborhood” of L) and very often easier to work with.

2.1.2. Note. A typical divergent sequence is not a sequence growing
over all bounds, like for instance 1, 2, 3, . . . . Here we can obtain a sort of
convergence augmenting the reals by infinites +∞ and −∞ as we will see
later. Rather think of sequences like 0, 1, 0, 1, . . . .

2.2. Observations. 1. The limit of a constant sequence x, x, x, . . . is x.
2. A limit, if it exists, is uniquely determined.

13



3. Each subsequence of a convergent sequence converges, and namely to
the same limit.

(Indeed, as for 2, suppose L and K are limits of (xn)n. For any ε > 0 and
sufficiently large n we have |L−K| = |L−xn+xn−K| ≤ |L−xn|+|xn−K| <
2ε. For 3 realize that kn ≥ n.)

2.2.1. Note. On the other hand, a divergent sequence can have con-
vergent subsequences. Of course, however, if xp, xp+1, xp+2, . . . (that is, the
subsequence with kn = p+ n) converges then (xn)n converges.

2.3. Proposition. Let lim an = A and lim bn = B exist. Then lim(αan),
lim(an + bn), lim(an · bn) and, if all bn and B are non-zero, also lim an

bn
exist

and we have

(1) lim(αan) = α lim an,

(2) lim(an + bn) = lim an + lim bn,

(3) lim(an · bn) = lim an · lim bn,

(4) lim an
bn

= lim an
lim bn

.

Notes before the proof. 1. Realize that the role of the ε > 0 in the
definition of limit above is that of an “arbitrary small positive real number”
the precise value of which is not quite so important. Thus it suffices, for
instance, to prove that for each ε > 0 there is an n0 such that for n ≥ n0 you
have |xn − L| < 100ε (you could have determined the n0 for 1

100
ε instead of

ε, to begin with.
2. Remember the trick of adding 0 in the form of x− x (here, x = anB)

in proving (3). It will be used more often.

Proof. (1): We have |αan − αA| = |α||an − A|. Thus, if |an − A| < ε we
have |αan − αA| < |α|ε.

(2) If |an − A| < ε and |bn − B| < ε then |(an + bn) − (A + B)| =
|an − A+ bn −B| ≤ |an − A|+ |bn −B| < 2ε.

(3) If |an − A| < ε and |bn −B| < ε then

|anbn − AB| = |anbn − anB + anB − AB| ≤
≤ |anbn − anB|+ |anB − AB| = |an||bn −B|+ |B||an − A| <
< (|A|+ 1)|bn −B|+ |B||an − A| < (|A|+ |B|+ 1)ε

14



(we have used the obvious fact that if lim an = A then, for sufficiently large
n, |an| < |A|+ 1).

(4) In view of (3) it suffices to prove that lim 1
bn

= 1
lim bn

. Let |bn−B| < ε.
Then∣∣∣∣ 1

bn
− 1

B

∣∣∣∣ =

∣∣∣∣bn −BbnB

∣∣∣∣ =

∣∣∣∣ 1

bnB

∣∣∣∣ |bn −B| ≤ ∣∣∣∣ 2

BB

∣∣∣∣ |bn −B| < ∣∣∣∣ 2

BB

∣∣∣∣ ε.
since obviously if lim bn = B 6= 0 then, for sufficiently large n, |bn| > 1

2
|B|.

�

2.4. Proposition. Let lim an = A and lim bn = B exist and let an ≤ bn
for all n. Then A ≤ B.

Proof. Suppose not. Then ε = A−B > 0. Choose n such that |an−A| <
1
2
ε and |bn − B| < 1

2
ε; then an > A+ ε

2
and bn < B − ε

2
, and hence an > bn,

a contradiction. �

2.5. Proposition. Let lim an = A = lim bn and let an ≤ cn ≤ bn for all
n. Then lim cn exists and is equal to A.

Proof. Choose n0 such that for n ≥ n0 we have |an−A| < ε and |bn−A| <
ε. Then

A− ε < an ≤ cn ≤ bn < A+ ε.

Use 2.1.1. �

2.6. Proposition. A bounded (from above) non-decreasing sequence of
real numbers converges to its supremum.

Proof. As {xn |n ∈ N} is non-empty and bounded, it indeed has a supre-
mum s. If ε is greater than zero there has to be an n0 such that s− ε < xn0

and then for all n ≥ n0,

s− ε < xn0 ≤ xn ≤ s.

Use 2.1.1. �

2.7. Theorem. Let a, b be real numbers and let a ≤ xn ≤ b for all
n. Then there is a subsequence (xkn)n of (xn)n convergent in R, and a ≤
limn xkn ≤ b.

Proof. Set

M = {x |x ∈ R, x ≤ xn for infinitely many n}.
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M is non-empty since a ∈ M and b is an upper bound of M . Hence there
exists s = supM and we have a ≤ s ≤ b.

For every n the set

K(n) = {n | s− 1

n
< xn < s+

1

n
}

is infinite. Indeed, by 2.5 (second formulation of the definition of supremum)
we have an x > s − ε such that xn > x for infinitely many n, while by the
definition of the set M there are only finitely many n such that xn ≥ s+ ε.

Choose k1 such that

s− 1 < xk1 < s+ 1.

Let us already have k1 < k2 < · · · < kn such that for j = 1, . . . , n

s− 1

j
< xkj < s+

1

j
.

Since K(n+ 1) is infinite there is a kn+1 > kn such that

s− 1

n+ 1
< xkn+1 < s+

1

n+ 1
.

Thus chosen subsequence (xkn)n of (xn)n obviously converges to s. �

3. Cauchy sequences

3.1. A sequence (xn)n is said to be Cauchy if

∀ε > 0 ∃n0 such that ∀m,n ≥ n0, |xm − xn| < ε.

3.1.1. Observation. Every convergent sequence is Cauchy.
(Indeed, if |xn − L| < ε for n ≥ n0 then for m,n ≥ n0,

|xn − xm| = |xn − L+ L− xm| ≤ |xn − L|+ |L− xm| < 2ε.)

3.2. Lemma. If a Cauchy sequence has a convergent subsequence then
it converges itself.

Proof. Suppose (xn)n is Cauchy and lim xkn = x. Let ε > 0.

16



Choose n1 such that for m,n ≥ n1, |xm − xn| < ε and n2 such that for
n ≥ n2, |xn − x| < ε. Set n0 = max(n1, n0).

Now if n ≥ n0

|xn − x| = |xn − xkn + xkn − x| ≤ |xn − xkn|+ |xkn − x| ≤ 2ε

since kn ≥ n ≥ n1. �

3.3. Lemma. Every Cauchy sequence is bounded.
Proof. Choose an n0 such that |xn − xn0 | < 1 for all n ≥ n0. Then we

have

a = min{xj | j = 1, 2, . . . , n0} − 1 ≤ xn ≤ b = max{xj | j = 1, 2, . . . , n0}+ 1

for all n. �

3.4. Theorem. (Bolzano-Cauchy Theorem) A sequence of real numbers
is convergent if and only if it is Cauchy.

Proof. A Cauchy sequence is by Lemma 3.3 bounded and hence, by
Theorem 2.7 has a convergent subsequence. Apply Lemma 3.2.

The other implication has been already observed in 3.1.1. �

3.4.1. Remarks. 1. The proof was very short, but this was because we
had had already prepared the essence in Theorem 2.7.

2. Bolzano-Cauchy Theorem is extremely important. Realize that it is a
criterion of convergence that can be used without any previous knowledge of
the value of the limit, or of values from which it could have been computed.

4. Countable sets: the size of sequences
as the smallest infinity

This section is about general sequences, not just about sequences of real
numbers.

4.1. Comparing cardinalities. Two sets X, Y are equally large (we
say that they have the same cardinality and write

cardX = cardY )

17



if there is an invertible (that is, one-to-one onto) mapping f : X → Y . One
writes

cardX ≤ cardY

if there is a one-to-one mapping f : X → Y . This means that Y is at least
as large as X.

Note. The question naturally arises whether cardX ≤ cardY and cardY ≤
cardX implies cardX = cardY . This is obvious for finite sets and not quite
so obvious for infinite ones, but it is true, by Cantor-Bernstein Theorem.

4.2. Proposition. The size of the set of natural numbers is the smallest
infinite one. Formally, if X is infinite then cardN ≤ cardX.

Proof. We can construct a one-to-one mapping f : N → X inductively
as follows. Choose f(0) ∈ X arbitrarily. Suppose f(0), . . . , f(n) have been
chosen. Since X is infinite, X r {f(0), . . . , f(n)} is non-empty and we can
choose f(n+ 1) ∈ X r {f(0), . . . , f(n)}. �

4.3. Countable sets. A set is said to be countable if cardX = cardN.
In other words, a set is countable if there is a one-one onto map f : N→ X,
hence iff the set can be ordered into a one-to-one sequence

X : x0, x1, . . . , xn . . .

(set xn = f(n)).
If we want to say that X is finite or countable we say that it is at most

countable.
Note that
4.3.1. checking that a set is countable it suffices to know it is infinite and

order it into any sequence: the possible repetitions can be deleted and we still
have an (infinite) sequence.

4.4. Proposition. Let Xn, n ∈ N, be at most countable. Then

X =
∞⋃
n=0

Xn

is at most countable.
Proof. Let us order the sets Xn into sequences

Xn : xn0, xn1, . . . , xnk, . . . .
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Now we can order X into the sequence

x00, x01, x10, x02, x11, x20, x03, x12, x21, x30, . . . ,

. . . x0,k, x1,k−1, x2,k−2, . . . , xk−2,2, xk−1,1, xk,0, . . . .

�

4.5. Corollary. Let X be countable. Then X ×X is countable.
(Indeed, X ×X =

⋃
x∈X X × {x}.)

4.6. Corollary. The set Q of all rational numbers is countable.

4.7. Corollary. Let X be countable. Then any finite cartesian power
Xn is countable, and hence also

∞⋃
n=0

Xn

is countable.
Consequently, the set of all finite subsets of X is countable.

4.8. Fact. The set R of all real numbers is not countable.
Proof. Represent a real number between zero and one in a decadic ex-

pansion
r : 0.r1r2 · · · rn · · · .

Now order all such numbers in a sequence (vertically)

r1 : 0.r11r12r13 · · · r1n · · ·
r2 : 0.r21r22r23 · · · r2n · · ·
r3 : 0.r31r32r33 · · · r3n · · ·
. . .

rk : 0.rk1rk2rk3 · · · rkn · · ·
. . .

Now set

xn =

{
1 if rnn 6= 1,

2 if rnn = 1.
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The real number r = 0.x1x2 · · ·xn · · · has not appeared in the sequence above
– a contradiction. �

4.9. Cantor Diagonalization Theorem. The procedure in 4.8 is a
special case of the famous Cantor diagonalization.

Theorem. (Cantor) The cardinality of the set P(X) of all subsets of a
set X is strictly bigger than that of X itself.

Proof. Suppose cardX = cardP(X). Then we have a one-to-one onto
mapping f : X → P(X). Set

A = {x |x ∈ X, x /∈ f(x)}

and consider the a ∈ X such that A = f(a). We cannot have a /∈ A = f(a)
because then a ∈ A by the definition of A. But we cannot have a ∈ A either,
because then, for the same reason a /∈ A. �
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III. Series.

1. Summing a series as a limit of partial sums

1.1. Let (an)n be a sequence of real numbers. An associated series

∞∑
n=0

an or a0 + a1 + a2 + · · ·

is the limit limn

∑n
k=0 ak, provided it exists.

More precisely, if the limit exists we speak of a convergent series; other-
wise we speak of a divergent series.

1.2. A series that is easy to sum: the geometric series. Let q be
a real number, 0 ≤ q < 1. Consider the finite sums

s(n) = 1 + q + q2 + · · ·+ qn.

We have
q · s(n) = q + q2 + · · ·+ qn+1 = s(n)− 1 + qn+1

so that

s(n) =
1− qn+1

1− q
and since limn q

n = 0 (else we had a = infn q
n > 0 and then a

q
> a and hence

for some k, qk < a
q

and qk+1 < a – a contradiction) we have

∞∑
n=0

qn = lim
n
s(n) =

1

1− q
. �

1.3. Proposition. Let a series
∑∞

n=0 an converge. Then limn an = 0.
Proof. Suppose not. Then there is a b > 0 such that for every n there is

a pn > n such that |apn| ≥ b. Hence∣∣∣∣∣
pn∑
k=0

ak −
pn−1∑
k=0

ak

∣∣∣∣∣ = |apn| ≥ b
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and the sequence (
∑n

k=0 ak)n is not even Cauchy. �

1.4. A divergent case: the harmonic series. The necessary condi-
tion from 1.3 is not sufficient. Here is a example (which has also other uses),
the harmonic series

1 +
1

2
+

1

3
+ · · ·+ 1

n
+ · · · .

Consider the finite sums

Sn =
10n+1∑

k=10n+1

1

k

(hence,

S0 =
1

2
+ · · ·+ 1

10
, S1 =

1

11
+ · · ·+ 1

100
, S2 =

1

101
+ · · ·+ 1

1000
, etc.).

Sn has 9 · 10n summands all of them ≥ 1
10n+1 so that Sn ≥ 9

10
and hence

10n+1∑
k=0

1

k
= 1 + S0 + · · ·Sn ≥ 1 + n

9

10
.

1.4.1. For the same reasons we have divergent series

1

2
+

1

4
+

1

6
+ · · · and 1 +

1

3
+

1

5
+

1

7
+ · · ·

2. Absolutely convergent series

2.1. A series
∑∞

n=1 an is absolutely convergent if

∞∑
n=1

|an|

converges.

2.2. Proposition. An absolutely convergent series converges.
More generally, if |an| ≤ bn for all n and if

∑∞
n=1 bn converges then∑∞

n=1 an converges.
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Proof. Set

sn =
∞∑
n=1

an and sn =
∞∑
n=1

bn.

Recall II.3. The sequence (sn)n converges and hence it is Cauchy. Now for
m < n

|sn − sm| = |
n∑

k=m+1

ak| ≤
n∑

k=m+1

|ak| = |sn − sm|;

thus the sequence (sn)n is Cauchy, and hence convergent. �

Remark. This is an example of a very important consequence of Bolzano-
Cauchy Theorem. Note that we have here an existence of a sum about the
value of which we have no information.

2.3. Theorem. The series
∑∞

n=0 an converges absolutely if and only if
for every ε > 0 there is an n0 such that for every finite K ⊆ {n |n ≥ n0} we
have

∑
k∈K |ak| < ε.

Proof. For the sequence (xn)n with xn =
∑n

k=0 |ak| and n0 ≤ n ≤ m
we have |xn − xm| =

∑
m≤k≤n |ak|. Hence the condition on the finite sets

K (recalling again that all the summands are non-negative), is just another
way of stating that (xn)n is Cauchy. �

2.3.1. Note. By Theorem 2.3 we see that the sum of an absolutely
convergent series can be viewed as arbitrarily well approximated by sums
over finite subsets of N: for any ε we have a finite subset of N so that
no finite subset of the |ak| in the residual part adds to more than ε. In
the following theorem we will see another aspect of this fact: an absolutely
convergent series can be arbitrarily reshuffled and the sum does not change.

For the non-absolutely convergent series this is not at all the case. There,
the sum is just the limit of the sums of the segments over the sets {1, 2. . . . , n},
and heavily depends on the order a1, a2, a3, . . . as we will see in the next
section.

2.4. Theorem. Let s =
∑∞

n=1 an converge absolutely. Then the value of
the sum does not depend on the order of the an in the sequence. More pre-
cisely, for any p : N→ N that is one-to-one and onto,

∑∞
n=1 ap(n) converges

to the same sum s.
Proof. For ε > 0 choose, first, by 2.3 an n1 such that for every finite

K ⊆ {n |n ≥ n1} we have
∑

k∈K |ak| < ε. Further, choose an n2 ≥ n1 such
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that |
∑n2

k=1 ak − s| < ε. Finally choose an n0 ≥ n2 such that for n ≥ n0,

{p(1), . . . , p(n)} ⊇ {1, 2, . . . , n2}.

Now let n ≥ n0. Set K = {p(1), . . . , p(n)}r {1, 2, . . . , n2}. We have

|
n∑
k=1

ap(k) − s| = |
n2∑
k=1

ak +
∑
k∈K

ak − s| =

= |
n2∑
k=1

ak − s+
∑
k∈K

ak| ≤ |
n2∑
k=1

ak − s|+
∑
k∈K

|ak| < 2ε. �

2.5. Two criteria of absolute convergence. The summability of ge-
ometric series (see 1.2) and Proposition 2.2 lead to the following easy criteria
of convergence.

2.5.1. Proposition. (D’Alembert Criterion of Convergence) Let there
be a q < 1 and n0 such that for all n ≥ n0,∣∣∣∣an+1

an

∣∣∣∣ ≤ q.

Then
∑∞

n=1 an absolutely converges. If there is an n0 such that for n ≥ n0∣∣∣∣an+1

an

∣∣∣∣ ≥ 1

Then
∑∞

n=1 an diverges.
Proof. If the first holds we have for n ≥ n0, |an+1| ≤ q|an| so that

|an+k| ≤ |an0| · qk.
The second statement is trivial. �

2.5.2. Proposition. Cauchy Criterion of Convergence) Let there be a
q < 1 and n0 such that for all n ≥ n0,

n
√
|an| ≤ q.

Then
∑∞

n=1 an absolutely converges. If there is an n0 such that for n ≥ n0

n
√
|an| ≥ 1
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Then
∑∞

n=1 an diverges.

Proof. This is even more straightforward: if we have n
√
|an| < q then

|an| ≤ qn. �

2.5.3. These criteria are often presented in a weaker, but transparent
form:

If limn

∣∣∣an+1

an

∣∣∣ < 1 resp. limn
n
√
|an| < 1 then the series

∑∞
n=1 an converges

absolutely, If limn

∣∣∣an+1

an

∣∣∣ > 1 resp. limn
n
√
|an| > 1 then the series

∑∞
n=1 an

does not converge at all.

In this formulation one sees the apparent gap: what happens if the limit
is 1? In fact, anything; such a series can then still be absolutely convergent,
or convergent but not absolutely so, or not convergent at all (the last we
have seen in 1.4, for examples of the other cases see 3.2 below).

3. Non-absolutely convergent series

3.1. The alternating series. We have already seen that lim an gen-
erally does not suffice to make a series convergent. There is, however, an
important case where it does.

Proposition. Let an ≥ an+1 for all n. Then the series

a1 − a2 + a3 − a4 + · · ·

converges if and only if limn an = 0.
Proof. Set sn =

∑n
k=0(−1)n+1ak. We have

s2n+2 = s2n+a2n+1−a2n+2 ≤ s2n and s2n+3 = s2n+1−a2n+2+a2n+3 ≥ s2n+1.

Thus we have two sequences,

s1 ≥ s3 ≥ · · · ≥ s2n+1 ≥ · · · ,
s2 ≤ s4 ≤ · · · ≤ s2n ≤ · · · ,

both of them convergent by II.2.6. Now we have s2n+1 − s2n = a2n+1 so that
these two sequences converge to the same number (and hence to limn sn) if
and only if limn an = 0. �
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3.2. Notes. 1. In particular we have the convergent series

1− 1

2
+

1

3
− 1

4
+

1

5
− · · · . (∗)

By 1.4 it is not asolutely convergent. Note that here limn

∣∣∣an+1

an

∣∣∣ = 1 (cf.

2.5.3)

2. Take the series (∗) and transform it to(
1− 1

2

)
+

(
1

3
− 1

4

)
+

(
1

5
− 1

6

)
+ · · · ,

that is to
1

1 · 2
+

1

3 · 4
+

1

5 · 6
+ · · · .

This is a series of positive numbers with the same sum as (∗). Hence it is ab-

solutely convergent and also here we have limn

∣∣∣an+1

an

∣∣∣ = limn

∣∣∣ (2n+1)(2n+2)
(2n+3)(2n+4)

∣∣∣ = 1

(cf. 2.5.3 again).

3.3. Finally we will show that a convergent but not absolutely conver-
gent series is just the limit from the definition, and cannot be viewed as a
“countable sum”.

Thus let
∑∞

n=1 an be a convergent series that is not absolutely convergent.
Divide the sequence (an)n into two sequences

B : b1, b2, b3, . . . ,

C : c1, c2, c3, . . . ,

the first consisting of the non-negative an, the second consisting of the neg-
ative ones, in the order as they occur in (an)n.

3.3.1. Lemma. Neither of the sequences (
∑n

k=1 bk)n, (
∑n

k=1(−ck))n has
an upper bound.

Proof. 1. Suppose both of them have. Then
∑∞

n=1 bn and
∑∞

n=1 cn are
absolutely convergent. For ε > 0 choose n1 such that for every finite K ⊆
{n |n ≥ n1} we have

∑
k∈K |bk| < ε and

∑
k∈K |ck| < ε. Now if we choose

n0 such that {a1, . . . , an0} contains both {b1, . . . , bn1} and {c1. . . . , cn1} then
for every finite K ⊆ {n |n ≥ n0} we have

∑
k∈K |ak| < 2ε and we see that∑∞

n=1 an is absolutely convergent.
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2. Let, say, (
∑n

k=1(−ck))n be bounded but (
∑n

k=1 bk)n not. Then
∑∞

n=1 cn
is absolutely convergent; choose n1 such that for every finiteK ⊆ {n |n ≥ n1}
we have

∑
k∈K |ck| < 1. If n0 is such that {a1, . . . , an0} contains the segment

{c1, . . . , cn1} then for n ≥ n0 we have
∑n

k=1 ak >
∑n

k=1 bk−
∑n1

k=1 |ck|−1 and
hence (

∑n
k=1 ak)n is not bounded and cannot converge. �

3.3.2. Proposition. Let
∑∞

n=1 an be a convergent but not absolutely
convergent series and let r be an arbitrary real number. Then the series can
be reshuffled to

∑∞
n=1 ap(n) (p : N → N is a one-to-one onto mapping) equal

to r.
Proof. Let, say, r ≥ 0. Let n1 be the first natural number such that∑n1

k=1 bk > r. Then take the least m1 such that
∑n1

k=1 bk +
∑m1

k=1 bk < r.
Further let n2 be first such that

n1∑
k=1

bk +

n1∑
k=1

bk +

n2∑
k=n1+1

bk > r

and m2 first such that

n1∑
k=1

bk +

n1∑
k=1

bk +

n2∑
k=n1+1

bk +

m2∑
k=m1+1

ck < r.

Proceeding this way and taking into account that both (bn)n and (cn)n (sub-
sequences of (an)n) converge to zero we see that

b1 + · · ·+ bn1 + c1 + · · ·+ cm1 + bn1+1 + · · ·+ bn2 + cm1+1 + · · ·+ cm2 + · · ·
· · ·+ bnk+1 + · · ·+ bnk+1

+ cmk+1 + · · ·+ cmk+1
+ · · · = r �
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IV. Continuous real functions

1. Intervals

1.1. Notation and terminology. Recall the standard notation. For
a ≤ b set

(a, b) = {x | a < x < b}
〈a, b) = {x | a ≤ x < b}
(a, b〉 = {x | a < x ≤ b}
〈a, b〉 = {x | a ≤ x ≤ b}
(a,+∞) = {x | a < x}
〈a,+∞) = {x | a ≤ x}
(−∞, b) = {x |x < b}
(−∞, b〉 = {x |x ≤ b}

These subsets of R, and further ∅ and R itself, are referred to as (real)
intervals. The first four and ∅ are said to be bounded.

Further, in the cases 1, 5, 7, ∅ and R one speaks of open intervals, and in
the cases 4, 5, 8, ∅ and R one speaks of closed intervals. Note that ∅ and R
are both open and closed, and they are the only such.

1.1.1. Caution. The symbol “(a, b)” has been alredy used for an ordered
pair. We will keep this notation; the reader will certainly recognize from the
context whether we speak of an ordered pair or of a bounded open interval.

1.2. General characteristics of intervals. A subset of R is said to
be an interval if

∀a, b ∈ J (a ≤ x ≤ b ⇒ x ∈ J). (int)

2.1. Proposition. A subset J ⊆ R is an interval in the sense of (int)
iff it is one of the subsets mentioned in 1.1, including ∅ and R.

Proof. Each of the subsets from 1.1. obviously satisfies (int).
Now let J satisfy (int) and let it be non-empty.

(a) Let J have both a lower and an upper bound. Then there are a = inf J
and b = sup J .

(a1) If a, b ∈ J then obviously J = 〈a, b〉.
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(a2) If a ∈ J and if b /∈ J and a ≤ x < b then by the definition of infimum
there is a y ∈ J such that x < y and hence by (int) x ∈ J so that J = 〈a, b).

(a3) Similarly if a /∈ J and b ∈ J we infer that J = (a, b〉.
(a4) If neither a, b is in J and a < x < b choose by the definitions of

supremum and infimum y, z ∈ J such that a < y < x < z < b to infer that
J = (a, b).

(b) If J has a lower bound and no upper bound set a = inf J .
(b1) If a ∈ J then proceed like in (a2), with y ∈ J such that a ≤ x < y

obtained from the lack of upper bound to prove that J = 〈a,+∞).
(b2) If a /∈ J proceed like in (a4) with y from the definition of infimum

and z from the lack of upper bound to obtain J = (a,+∞).

(c) If J has an upper bound and no lower bound set b = sup J . Analo-
gously like in (b) we learn that J is either (+∞, b〉 or (+∞, b).

(d) Finally if J has no upper or lower bound, we easily see (similarly like
in (a4)) that J = R. �

1.3. Compact intervals. The bounded closed intervals 〈a, b〉 have
particularly nice properties. They will be referred to as compact intervals
(they are special cases of very important compact spaces we will meet later).
In particular we will often use Theorem II.2.7 in the following reformulation.

1.3.1. Theorem. Each sequence in a compact interval J contains a
subsequence converging in J .

2. Continuous real functions of one real variable

2.1. We will be interested in functions f : D → R with the domain D
typically an interval or a transparent union of intervals. Unless otherwise
stated, we will speak of these real functions of one real variable briefly as of
functions.

2.2. Continuity. A function f : D → R is said to be continuous at a
point x ∈ D if

∀ε > 0 ∃δ > 0 such that (y ∈ D and |y − x| < δ) ⇒ |f(y)− f(x)| < ε.

A function f : D → R is continuous if it is continuous in all the x ∈ D, that
is if

∀x ∈ D ∀ε > 0 ∃δ > 0 ((y ∈ D and |y − x| < δ) ⇒ |f(y)− f(x)| < ε).
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2.2.1. Constants and identity. For instance, the constant function
f : D → R defined by f(x) = c for all x ∈ D, or the f : D → R defined by
f(x) = x are continuous.

2.3. Arithmetic operations with functions. For f, g : D → R and
α ∈ R define

f + g, αf, fg and, if g(x) 6= 0 for x ∈ D, f
g

by setting

(f + g)(x) = f(x) + g(x), (αf)(x) = αf(x),

(fg)(x) = f(x)g(x) and

(
f

g

)
(x) =

f(x)

g(x)
.

2.3.1. Proposition. Let f, g : D → R be continuous in x and let α be
a real number. Then f + g, αf , fg and, if g(x) 6= 0 for x ∈ D, also f

g
, are

continuous in x.
Proof. The proof is quite analogous to that of II.2.3 - the only difference

is in chosing δ’s instead of n0’s. Just to illustrate it, let us prove it, this time
with an extreme pedantery, for the product fg. Note that the pedantery,
heading for a tidy ε instead of simply using the idea of “arbitrarily small”, in
fact obscures the matter. As an exercise do it again without the adjustments.

Let ε > 0. Choose

δ1 > 0 such that |y − x| < δ1 ⇒ |f(y)| ≤ |f(x)|,

δ2 > 0 such that |y − x| < δ2 ⇒ |f(y)− f(x)| < ε

2(|g(x)|+ 1)
,

δ3 > 0 such that |y − x| < δ3 ⇒ |g(y)− g(x)| < ε

2(|f(x)|+ 1)

and set δ = min(δ1, δ2, δ3). If |y − x| < δ we have

|f(x)g(x)−f(y)g(y)| = |f(x)g(x)− f(y)g(x) + f(y)g(x)− f(y)g(y)| =
= |(f(x)− f(y))g(x) + f(y)(g(x)− g(y))| ≤
≤ |g(x)||f(x)− f(y)|+ |f(y)||g(x)− g(y)| <

< (|g(x)|+ 1)
ε

2(|g(x)|+ 1)
+ (|f(x)|+ 1)

ε

2(|f(x)|+ 1)
= ε. �
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2.3.2. The following can be left to the reader as an easy exercise.

Proposition. For f, g : D → R define max(f, g), min(f, g) and |f | by
setting

max(f, g)(x) = max(f(x), g(x)), min(f, g) = min(f(x), g(x))

and |f |(x) = |f(x)|.

Let f and g be continuous in x. Then max(f, g), min(f, g) and |f | are
continuous in x.

2.4. Compositions of real functions. Let f : D → R and g : E → R
be real functions and let f [D] = {f(x) |x ∈ D} ⊆ E. Then we define the
composition of f and g, denoted

g ◦ f,

by setting (g ◦ f)(x) = g(f(x)).

2.4.1. Proposition. Let f : D → R be continuous in x and let g : E →
R be continuous in f(x) Then g ◦ f is continuous in x.

Proof. Let ε > O. Choose η > 0 such that |z − f(x)| < η implies
|g(z)−g(f(x))| < ε and δ > 0 such that |y−x| < δ implies |f(y)−f(x)| < η.
Then |y − x| < δ implies |g(f(y))− g(f(x))| < ε, �

3. Intermediate Value and Darboux Theorems

3.1. Theorem. (Intermediate Value Theorem) Let f : J → R be a
continuous function defined on an interval J . Let a, b ∈ J , a < b, and let
f(a)f(b) < 0. Then there exists a c ∈ (a, b) such that f(c) = 0.

Proof. Let, say, f(a) < 0 < f(b) (else take −f and use the fact that it is
continuous iff f is).

Set
M = {x | a ≤ x ≤ b, f(x) ≤ 0}.

Since a ∈ M , M 6= ∅, and M has the upper bound b by definition. Hence
there exists

s = supM

and we have a ≤ s ≤ b and hence c ∈ J and f(c) is defined.
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Suppose f(c) < 0. Set ε = −f(c) and consider a δ > 0 such that for x
with |c−x| ≤ δ one has f(c)− ε < f(x) < f(c) + ε. In particular one has for
c ≤ x < c + δ still f(x) < f(c) + (−f(c)) = 0 and s is not an upper bound
od M .

Suppose f(c) > 0. Set ε = f(c) and consider a δ > 0 such that for x such
that |c−x| ≤ δ one has f(c)−ε < f(x) < f(c)+ε. Now one has in particular
for c−δ < x already 0 = f(c)−f(c) < f(x) (for x > s, 0 < f(x) by definition
of M) and there are upper bounds smaller than s, a contradiction again.

Thus, f(c) is neither smaller nor greater than 0 and we are left with
f(c) = 0. �

3.2. Theorem. (Darboux) Let f : D → R be a continuous function and
let J be an interval, J ⊆ D. Then its image f [J ] is an interval.

Proof. Let a < b be in J and let f(a) < y < f(b) or f(a) > y > f(b).
Define g : D → R by setting g(x) = f(x) − y. By 2.2.1 and 2.3.1 g is
continuous. We have g(a)g(b) < 0 and hence by 3.1 there is an x with
a < x < b (and hence x ∈ J) such that g(x) = f(x) − y = 0 and hence
f(x) = y. �

3.3. Convention. A function f : D → R is said to be increasing,
non-decreasing, non-increasing, decreasing, respectively, if

x < y ⇒ f(x) < f(y), f(x) ≤ f(y), f(x) ≥ f(y), f(x) > f(y), resp..

Unlike in general theory of partially ordered sets (where one distinguishes
monotone and antitone maps), in analysis one uses the expression monotone
mapping as a general term for all these cases.

If x < y implies f(x) < f(y) resp. f(x) > f(y) we speek of a strictly
monotone mapping.

3.4. Proposition. Let J be an interval and let f : J → R be a continu-
ous one-to-one mapping. Then f is strictly monotone.

Proof. If not there are a < b < c such that f(a) < f(b) > f(c) or
f(a) > f(b) < f(c). We will consider the first case, the other is quite
analogous. Choose a y such that max(f(a), f(c)) < y < f(b). Using Theorem
3.2 for the interval 〈a, b〉 we obtain an x1, a < x1 < b with f(x1) = y , and
using it for the interval 〈b, c〉 we obtain an x2, b < x2 < c also with f(x1) = y.
Thus, f is not one-to-one. �
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4. Continuity of monotone and inverse functions

4.1. Theorem. Let J be an interval and let f : J → R be monotone.
Then it is continuous if and only if f [J ] is an interval.

Proof. I. If f [J ] is not an interval then f is not continuous, by 3.2.
II. Now let f [J ] be an interval. Let x ∈ J ; suppose it is not an extreme

point of the interval so that there are x1 < x < x2 still in J . Let ε > 0.
If f(x1) = f(x) = f(x2) it suffices to choose 0 < δ ≤ x − x1, x2 − x to

have |f(x)− f(y)| = 0 for x− δ < y < x+ δ.
If f(x1) < f(x) = f(x2) choose a u such that min(f(x1), f(x)− ε) < u <

f(x) and, by 3.2, x′1 such that f(x′1) = u. If we choose 0 < δ ≤ x−x′1, x2−x
we have, by monotonicity, f(x)− ε < f(y) ≤ f(x) for x− δ < y < x+ δ.

If f(x1) = f(x) < f(x2) choose a v such that f(x) < v < min(f(x2), f(x)+
ε) and and, by 3.2, x′2 such that f(x′2) = v. If we choose 0 < δ ≤ x−x1, x′2−x
we have, by monotonicity, f(x) ≤ f(y) < f(x) + ε for x− δ < y < x+ δ.

If f(x1) < f(x) < f(x2) choose u, v such that max(f(x2), f(x)− ε < u <
f(x) < v < min(f(x2), f(x) + ε) and, by 3.2, x′1, x

′
2 such that f(x′1) = u and

f(x′2) = v. If we choose 0 < δ ≤ x − x′1, x′2 − x we have, by monotonicity,
f(x)− ε < f(y) < f(x) + ε for x− δ < y < x+ δ.

The cases of the extremal points of the interval are quite analogous, only
easier because we have to take care only of one side of the x. �

Note. The cases of f(x1) = f(x) = f(x2), f(x1) < f(x) = f(x2) and
f(x1) = f(x) < f(x2) had to be discussed because the mapping f is supposed
to be just monotonous, not strictly monotonous. The reader, of course, sees
that the gist is in the case f(x1) < f(x) < f(x2); in the first reading the
previous three cases may be skipped, and the proof will become (even) more
transparent.

4.2. The inverse of a real function f : D → R. The inverse of
f : D → E is a real function g : E → R such that g ◦ f and f ◦ g exist and
f(g(x)) = x and g(f(x)) = x for all x ∈ E resp. all x ∈ D.

4.2.1. Observation. If g : E → R is inverse to f : D → R then
f : D → R is inverse to g : E → R, we have f [D] = E and g[E] = D, and
the f, g restricted to D,E are mutually inverse mappings.

(Indeed the first statement is obvious. If y ∈ E set x = g(y) to obtain
f(x) = y. Thus we have the restrictions D → E and E → D one-to-one
onto.)
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4.3. Proposition. Let J be an interval, f : J → R. Then f has
an inverse g : J ′ → R if and only if it is strictly monotone, and this g is
continuous.

Proof. f has to be one-to-one and hence, by 3.4, it is strictly monotone.
This makes the J ′ = f [J ] an interval, by 2.3, and the inverse g : J ′ → R
also strictly monotone. Now g[J ′] = J , also an interval, and hence by 4.1 g
is continuous. �

4.4. Remark. Now we start to have a sizable stock of continuous
functions. From 2.2.1 and 2.3.1 we immediately see that the functions given
by polynomial formulas

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

and also the functions

f(x) =
a0 + a1x+ a2x

2 + · · ·+ anx
n

b0 + b1x+ b2x2 + · · ·+ bmxm

(so called rational functions) provided the domain does not contain any x
with b0 + b1x+ b2x

2 + · · ·+ bmx
m = 0.

Further, by 4.3 we have continuous functions given by formulas

f(x) =
√
x, f(x) = n

√
x

(with the obvious provisos about the domains) and all the functions ob-
tained from the mentioned ones in finitely many steps using compositions,
arithmetic operations, and the operations from 2.3.2. We will have more in
the next chapter.

5. Continuous functions on compact intervals

5.1. Theorem. A function f : D → R is continuous if and only if for
every convergent sequence in D, limn f(xn) = f(limn xn).

Proof. I. Let f be continuous and let limn xn = x. For ε > 0 choose
by continuity a δ > 0 such that |f(y) − f(x)| < ε for |y − x| < δ. Now by
the definition of the convergence of sequences there is an no such that for
n ≥ n0, |xn − x| < δ. Thus, if n ≤ n0 we have |f(xn) − f(x)| < ε so that
limn f(xn) = f(limn xn).

36



II. Let f not be continuous. Then there is an x ∈ D and an ε0 > 0 such
that for every δ > 0 there is an x(δ) such that

|x− x(δ)| < δ but |f(x)− f(x(δ))| ≥ ε0.

Set xn = x( 1
n
). Then limn xn = x but (f(xn))n cannot converge to f(x). �

5.2. Theorem. A continuous function f : 〈a, b〉 → R on a compact
interval attains a maximum and a minimum. That is, there are x0, x1 ∈ 〈a, b〉
such that for all x ∈ 〈a, b〉,

f(x0) ≤ f(x) ≤ f(x1).

Proof. The proof will be done for the maximum. Set

M = {f(x) |x ∈ 〈a, b〉}

I. Suppose M is not bounded from above. Then for each n we can choose
an xn ∈ 〈a, b〉 such that f(xn) > n. By 1.3.1 there is a subsequence xkn
with limn xkn = x ∈ 〈a, b〉. By 5.1, limn f(xkn) = f(x) in contradiction with
f(xkn) being arbitrarily large.

II. Thus, M , obviously non-empty, has to be bounded from above and
hence there is an s = supM . Thus, by the definition of supremum we have
xn ∈ 〈a, b〉 such that

s− 1

n
< f(xn) ≤ s. (∗)

Choose a subsequence xkn with limn xkn = x ∈ 〈a, b〉. By 5.1, limn f(xkn) =
f(x) and by (∗) this limit is s. Thus, f(x) = supM = maxM . �

5.4. Corollary. Let all the values of a continuous function on a compact
interval J be positive. Then there is a c ≥ 0 such that all the values of f are
≥ c.

(Take c = minM f(x).)

5.5. Corollary. Let f : J → R be continuous and let J be a compact
interval. Then f [J ] is a compact interval.

More generally, if f : D → R is continuous and if J ⊆ D is a compact
interval then f [J ] is a compact interval.
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5.5.1. Remark. Compact intervals and ∅ are the only intervals for
which the type is preserved in arbitrary continuous images. For the other
ones, f [J ] is an interval again, but not necessarily of the same type.

6. Limit of a function at a point

6.1. In the following, to avoid too many letters, we will omit specifying
the domain in some of the formulas (as for instance, if we have already
specified that our function is f : D → R and speak of continuity we write
just “∀ε > 0 ∃δ > 0 s. t. |y − x| < δ ⇒ |f(y)− f(x)| < ε”.

We say that a function f : D → R has a limit b at a point a, and write

lim
x→a

f(x) = b

if
∀ε > 0 ∃δ > 0 such that (0 < |x− a| < δ) ⇒ |f(x)− b| < ε.

Remark. Note the striking similarity with the definition of continuity,
but also the fundamental difference:

In this definition there is no reference to a possible value of the function
f in the point a. Indeed a does not have to be in the domain D, and
even if it is, the value f(a) does not play any role and has nothing to
do with the value b.

6.2. One-sided limits. We say that a function f : D → R has a limit
b at a point a from the right, and write

lim
x→a+

f(x) = b

if
∀ε > 0 ∃δ > 0 such that (0 < x− a < δ) ⇒ |f(x)− b| < ε.

It has a limit b at a point a from the left, written

lim
x→a−

f(x) = b,

if
∀ε > 0 ∃δ > 0 such that (0 < a− x < δ) ⇒ |f(x)− b| < ε.
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6.2.1. Remark. The reader has certainly noted that formally we could
obtain the one-sided limits by changing the domain: defining the f just
for the x > a for the limit from the right, and similarly for the other one.
But it would be misleading. Whatever the domain, the intuitive sense of
the concepts is the behaviour of the values when approaching the point a
(without attaining it), in the one-sided limits approaching it from above or
from below.

6.3. Observation. A function f : D → R is continuous at a point a if
and only if limx→a f(x) = f(a).

(Just compare the definitions.)

6.3.1. One-sided continuity. A function f : D → R is said to be
continuous at a point a from the right (resp from the left if limx→a+ f(x) =
f(a) ( resp. limx→a− f(x) = f(a)).

6.4. Proposition. Let limx→a(f)(x) = A and limx→a g(x) = B exist and
let α be a real number, Then limx→a(f+g)(x), limx→a(αf)(x), limx→a(fg)(x)
exist. and if B 6= 0 also limx→a

f
g
(x) exists, and they are equal, in this order,

to A+B, αA, AB and A
B

.
Proof. Use 6.3 and 2.3.1. Note that if B 6= 0 there is a δ0 > 0 such that

for |x− a| < δ0 we have g(x) 6= 0. �

6.4.1. Note that obviously the same holds for one-sided limits.

6.5. Now one may expect that in analogy with 2.4.1 we will have that
if limx→a f(x) = b and limx→b = c then limx→a(g(f(x)) = c. This is almost
true, but not quite so; we have to be careful.

Consider the following example. Define f, g : R→ R by setting

f(x) =

{
x for rational x,

0 for irrational x
and g(x) =

{
0 for x 6= 0,

1 for x = 0.

Here we have limx→0 f(x) = 0 and limx→0 = 0 while limx→0 g(f(x)) does not
exist at all.

We have, however, a very useful

6.5.1. Proposition. Let limx→a f(x) = b and limx→b g(x) = c. Let
either

(1) g(b) = c (that is, g(b) is defined and g is continuous in b)
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or
(2) for sufficiently small δ0 > 0, 0 < |x− a| < δ0 ⇒ f(x) 6= b.

Then limx→a g(f(x)) exists and is equal to c.
Proof. For ε > 0 choose an η > 0 such that

0 < |y − b| < η ⇒ |g(y)− c| < ε

and for this η choose a δ > 0 (in the second case, δ ≤ δ0) such that

0 < |x− δ| < ε ⇒ |f(x)− b| < η.

Thus if 0 < |x − δ| < ε we have in case (2) |g(f(x)) − c| < ε because
|f(x)− b| > 0. In case (1), |f(x)− b| = 0 can occur, but no harm is done: in
such values we have |g(f(x))− c| = 0. �

6.6. Proposition. Let limx→a f(x) = b = limx→a g(x) and let f(x) ≤
h(x) ≤ g(x) for |x − a| smaller than some δ0 > 0. Then limx→a h(x) exists
and is equal to b.

Proof. This is obvious: if |f(x)− b| < ε and |g(x)− b| < ε then b− ε <
f(x) ≤ h(x) ≤ g(x) < b+ ε. �

6.7. Discontinuities of the first and of the second kind. If a
function defined at a point a ∈ D is not continuous in this point we speak
of a discontinuity of the first kind if the one-sided limits in this point exist,
but either they are not equal, or the value f(a) is not equal to the limit.

Otherwise we speak of a discontinuity of the second kind.
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V. Elementary functions

In IV.4.4 we introduced some basic continuous real functions given by
simple formulas (polynomials, rational functions, roots), and everything that
one obtains from them by compositions, arithemtic operations, and inverses,
applied repeatedly.

In this chapter we will extend this storage of functions by logarithms,
exponentials, goniometric and cyclometric functions. The system of functions
obtained from those mentioned above and the new ones by compositions,
arithmetic operations, inverses, and also by restrictions, applied repeatedly,
are called elementary functions.

The new functions will be introduced with a different degree of precision.
The logarithm will be defined axiomatically, and the reader will have

to believe, for the time being, that a function with the required properties
really exists. This will be mended after we will have the technique of Riemann
integral.

Goniometric functions will be used in the form in which the student al-
ready knows them. We will need some very transparent facts about limits
where we will use geometric intuition about the length of segments of a circle
(hopefully persuasive enough, but lacking in rigour).

1. Logarithms

.
1.1. The function

lg : (0,+∞)→ R

has the following properies1.

(1) lg increases on the whole interval (0,+∞)

(2) lg(xy) = lg(x) lg(y)

(3) limx→1
lg x
x−1 = 1.

1The existence of such a funcion will be proved in XII.4 below.
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1.2. Two equalities. We have

lg 1 = 0, lg
x

y
= lg x− lg y.

(lg 1 = lg(1 · 1) = lg 1 + lg 1. Further, lg x
y

+ lg y = lg(x
y
y) = lg x.)

1.3. Three limits. We have

lim
x→0

lg(1 + x)

x
= 1, lim

x→1
lg x = 0, lim

x→a
lg
x

a
= 0.

(For the first use IV.6.5.1 and the obvious limx→0(x + 1) = 1. For the
second, limx→1 lg x = limx→1

lg x
x−1 limx→1(x− 1) = 1 · 0 = 0; for the third use

the second, IV.5.1 and the obvious limx→a
x
a

= 1.)

1.4. Proposition. The function lg is continuous and lg[(0,+∞)] = R.
Proof. For an arbitrary a > 0 we have limx→a lg x = limx→a lg(ax

a
) =

limx→a(lg a + lg x
a
) = limx→a lg a + limx→a lg x

a
= lg a + 0 = lg a so that lg is

continuous by IV.6.3.
Now we know by IV.3.2 that J = lg[(0,+∞)] is an interval. By 1.1(1),

K = lg 2 > 0 and we have, by 1.2, −K = lg 1
2
. Hence we have in J arbitrarily

large positive numbers, namely nK = lg(2n) and arbitrarily large negative
numbers, namely −nK = lg 1

2n
so that by the definition of interval, x ∈ J

for all x ∈ R. �

1.5. Logarithm with general base. So far only a definition. The
logarithm with base a, where a > 0 and a 6= 1, is

loga x =
lg x

lg a
.

2. Exponentials

.
2.1. By 1.4 (and IV.4.3), lg has a continuous inverse

exp : R→ R with all values exp(x) positive.
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From the rules in 1.1 and 1.2 we immediately obtain that

exp 0 = 1,

exp(x+ y) = exp x · exp y, and

exp(x− y) =
expx

exp y
.

2.1.1. From 1.1.(3) and IV.5.5.1 we obtain an important limit

lim
x→1

exp(x)− 1

x
= 1.

2.2. The function exp as exponentiation. Euler’s number. Set

e = exp(1).

This number e is called Euler’s constant
We obviously have, for natural n,

expn = exp(

n︷ ︸︸ ︷
1 + 1 + · · ·+ 1) = en

and by 2.1,

exp(−n) =
1

exp(n)
= e−n.

Further, recalling the standard rational exponents a
p
q defined as q

√
ap we see

that
exp(

p

q
) = e

p
q

since exp(p
q
)q = exp(p) = ep and it is the only positive real number with this

property. Taking into account the continuity of exp we now see that it is
natural to view

exp(x) = ex

as the x-th power of e.

2.2.1. The limit from 2.1.1 will be used in the form

lim
x→1

ex − 1

x
= 1.
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2.3. Since elg a = exp lg a = a we can define, for a > 0,

ax = ex lg a

and easily check that this is a natural exponentiaion in the same sense as ex

is (coinciding with classical an =

n times︷ ︸︸ ︷
aa · · · a etc.).

2.3.1. Now we can give more sense to the loga x from 1.5: it is the inverse
to the exponentiation ax similarly like lg x is the inverse to ex. Indeed we

have aloga x = a
lg x
lg a = e

lg x
lg a

lg a = elg x = x and loga(a
x) = lg(ax)

lg a
= lg(ex lg a)

lg a
=

x lg a
lg a

= x.

2.3.2. Finally we can use this general exponentiation (albeit only for
x > 0) to define continuous

x 7→ xa = ea lg x.

As an easy exercise check that that it coincides with classical xn and x
p
q

(restricted to x > 0).

3. Goniometric and cyclometric functions

3.1. Recall the functions

sin, cos : R→ R
usually defined as the ratio of the opposite resp. adjacent side to the hy-
potenuse in a rectangular triangle. The argument in these functions is the
angle (to which the side in question is opposite or adjacent). To measure the
angle (and thus to obtain the argument x) one uses the length of a segment
of the unit circle (see the picture below); we assume that we know what the
length of such a curve is2.

sinx x
1

cosx

2Rigorous defintions can be found in XXIII.1 below
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Both the functions are defined on the whole of R as periodic with the period
2π, see below (“the argument length is wound up around the circle”).

3.1.1. Let us summarize some basic facts:

sin2 x+ cos2 x = 1,

| sinx|, | cosx| ≤ 1.

sin(x+ 2π) = sin x, cos(x+ 2π) = cos x,

sin(x+ π) = − sinx, cos(x+ π) = − cosx,

cosx = sin(
π

2
− x), sinx = cos(

π

2
− x).

sin(−x) = − sinx, cos(−x) = cos x.

3.1.2. Further let us recall the very important formulas

sin(x+ y) = sin x cos y + cosx sin y,

cos(x+ y) = cos x cos y − sinx sin y.

3.1.3. From 3.1.2 we easily deduce the following often used equalities.

sinx cos y =
1

2
(sin(x+ y)− sin(x− y)),

sinx sin y =
1

2
(cos(x− y)− cos(x+ y)),

cosx cos y =
1

2
(cos(x− y) + cos(x+ y)).

3.2. Four important limits.
1. limx→0 sinx = 0,
2. limx→0 cosx = 1,
3. limx→0

sinx
x

= 1,
4. limx→0

cosx−1
x

= 1.

Explanation. I write, rather, “Explanation” than “Proof”. The deduction
will be based on the intuitive understanding of the length of a segment x of
the unit circle.

Consider the following picture.
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D

tanx= sin x
cos x

B

sinx x

A

1

cosx C E

1. Since | sin(−x)| = | sinx| it suffices to consider positive x. The curved
segment x is longer than sinx (segment BC) (it is even longer than the
straight segment BE), hence for small positive x we have 0 < sinx < x, and
since limx→9 x = 0 the statement follows.

2. By 1 we have limx→0 cos2 x = 1− limx→0 sin2 x = 1 and since x 7→
√
x

is continuous in 1 we have limx→0 cosx = 1.

3. Comparing the areas of the triangles ABC, ADE and the intermediate
triangle with the curved base x, ABE, we obtain

1

2
sinx cosx ≤ 1

2
x ≤ 1

2

sinx

cosx

and from this further

cosx ≤ sinx

x
≤ 1

cosx
.

Use 2 and IV.6.6.

4. Since sin2 x = 1− cos2 x = (1 + cosx)(1− cosx) we have

1− cosx

x
=

1

1 + cos x
· sinx · sinx

x
.

Use 2, 1, and 3. �

3.3. Proposition. The functions sin and cos are continuous.
Proof. Since cos x = sin(π

2
− x) it suffices to prove that sin is continuous.

We have

sinx = sin(a+ (x− a)) = sin a · cos(x− a) + cos a · sin(x− a)
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and hence, by 3.2 and IV.6.5.1,

lim
x→a

sinx = sin a · 1 + cos a · 0 = sin a.

Use IV.6.3. �

3.4. Tangens and cotangens. We have sinx = 0 precisely when
x = kπ for an integer k, and cosx = 0 precisely when x = kπ + π

2
. Hence

one can correctly define the function tangens,

tan : D → R where D =
+∞⋃
−∞

((k − 1

2
)π, (k +

1

2
)π)

by setting

tanx =
sinx

cosx
.

We have

Fact. The function tan is continuous and increases on each interval
((k− 1

2
)π, (k+ 1

2
)π), we have tan(x+π) = tan x, and tan[((k− 1

2
)π, (k+ 1

2
)π)] =

R.
Proof. We will start with the period π: the functions sin and cos have a

period 2π but we have sin(x+π)
cos(x+π)

= − sinx
− cosx

= sinx
cosx

.

Since sin obviously increases and cos decreases on the interval 〈0, π
2
〉, tan

increases on this interval, and since tan(−x) = sin(−x)
cos(−x) = − sinx

cosx
= − tanx

we infer that tan increases on the whole of (−π
2
, π
2
). Finally, because of the

continuity there is a δ > 0 such that for π
2
−δ < x < π

2
we have cos x < 1

2n
and

sinx > 1
2

so that tanx > n and tan(−x) < −n so that tan[((k− 1
2
)π, (k+ 1

2
)π)]

(since it is an interval) has to be R. �

Similarly we have a function cotangens

cot : D → R where D =
+∞⋃
−∞

(kπ, (k + 1)π)

defined by setting

cotx =
cosx

sinx

with period π, continuous and decreasing on each (kπ, (k+1)π), and mapping
this interval onto R.
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3.5. Cyclometric functions. The function sin restricted to 〈−π
2
, π
2
〉 is

strictly monotone and maps this interval onto 〈−1, 1〉. Its inverse

arcsin : 〈−1, 1〉 → R

is called arcussinus. Similarly we have the function arcuscosinus

arccos : 〈−1, 1〉 → R

inverse to cos restricted to 〈0, π〉.
Of a particular interest is the inverse to tan restricted to (−π

2
, π
2
), the

arcustangens
arctan : R→ R,

defined on the whole of R.
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VI. Derivative

1. Definition and a characteristics

1.1. Convention. When speaking of a derivative of a function f : D →
R at a point x we assume that the domain D contains an interval (x−δ, x+δ)
for sufficiently small δ > 0 (we say that x is an interior point of the domain
D).

When speaking of a derivative of a function f : D → R at a point x from
the right resp. left we assume that D contains 〈x, x+ δ) resp. (x− δ, x〉.

1.2. Derivative. The derivative of a function f : D → R at a point x0
is the limit

A = lim
h→0

f(x0 + h)− f(x)

h

if it exists. If it does we say that f has a derivative in x0.
The derivative (the limit A) is usually denoted by

f ′(x0).

Other notation used is, e.g.,

df(x0)

dx
,

df

dx
(x0), or

(
d

dx
f

)
(x0).

(The second and the third comes from replacing the symbol f ′, without
specifying the x0, by df

dx
or d

dx
f .)

Note. The process of determining derivative is often called differentia-
tion.

1.2.1. From IV.6.5.1 we immediately obtain another expression for the
derivative,

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
. (∗)

1.3. One-sided derivatives. The derivative of f in x0 from the right
resp. from the left is the one-sided limit

f ′++(x0) = lim
h→0+

f(x0 + h)− f(x)

h
resp. f ′+(x0) = lim

h→0−

f(x0 + h)− f(x)

h
.
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Most rules for the one-sided derivatives will be the same as those for the
plain derivative, and will not need any particular discussion. The exception
will be the composition rule 2.2 – see 2.2.2 below.

1.4. Notes. There are (at least) three motivations resp. interpretations
of a derivative.

1. Geometry. Think of the f as an equation of a curve

C = {(x, f(x)) |x ∈ D}

in the plane. Then f ′(x0) is the slope of the tangent of C in the point
(0, f(x0)). More precisely, the tangent is given by the equation

y = f(x0) + f ′(x0)(x− x0).

2. Physics. Suppose f(x) is the length of the trajectory run through by
a moving body after elapsing time x. Then

f(y)− f(x)

y − x

is the average velocity between times x and y, and f ′(x0) is the actual velocity
in the moment x0.

Even more important in physics is the change of velocity, the acceleration.
This is expressed by the second derivative, see Section 4 below.

3. Approximation. Linear functions L(x) = C + Ax are easy to com-
pute. The derivative provides an approximation of the given function in
small neighbourhoods of a given argument by a linear function with an error
considerably smaller than the change of the argument. See 1.5.1.

1.5. Theorem. A function f has a derivative A at a point x if and only if
there exists for a sufficiently small δ > 0 a real function µ : (−δ,+δ)r{0} →
R such that

(1) limh→0 µ(h) = 0, and

(2) for 0 < |h| < δ,

f(x+ h)− f(x) = Ah+ µ(h)h.
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Proof. Suppose A = limh→0
f(x+h)−f(x)

h
exists. Set

µ(h) =
f(x+ h)− f(x)

h
− A.

Then µ obviously has the required properties.
On the other hand, let such µ exist. Then we have for small |h|,

f(x+ h)− f(x)

h
= A+ µ(h)

and f ′(x) exists and is equal to A by the rule of the limit of the sum. �

1.5.1. Recall 1.4.3. If we have f(x + h) − f(x) = Ah + µ(h)h as in
(2) above then the linear function L(y) = f(x) + A(y − x) approximates
f(y) in a small neighbourhood of x with the error µ(|y − x|)|y − x|, hence
µ(|y − x|)-times smaller that |y − x|.

1.6. Corollary. Let f have a derivative at a point x. Then it is contin-
uous in x.

(Indeed, set h = y − x. Then

|f(y)− f(x)| ≤ |A(y − x)|+ |µ(y − x)||(y − x)| < (|A|+ 1)|y − x|

for sufficiently small |y − x|.)

2. Basic differentiation rules

2.1. Arithmetic rules. In the following rules, f, g : D → R are
supposed to have a derivative in the point x and the statement includes the
claim that the f + g, αf , fg and f

g
have a derivative.

Proposition.

(1) (f + g)′(x) = f ′(x) + g′(x),

(2) for any real α, (αf)′(x) = αf ′(x),

(3) (fg)′(x) = f(x)g′(x) + f ′(x)g(x), and

(4) if g(x) 6= 0 then (
f

g

)′
(x) =

f ′(x)g(x)− f(x)g′(x)

(g(x))2
.
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Proof. We will transform the formulas so that the rules will immediately
follow by applying the limit rules IV.6.4 (and 1.6).

(1) We have

(f + g)(x+ h)− (f + g)(x)

h
=
f(x+ h) + g(x+ h)− f(x)− g(x)

h
=

=
f(x+ h)− f(x)

h
+
g(x+ h)− g(x)

h
.

(2)

(αf)(x+ h)− (αf)(x)

h
=
αf(x+ h)− αf(x)

h
= α

f(x+ h)− f(x)

h
.

(3)

(fg)(x+ h)− (fg)(x)

h
=
f(x+ h)g(x+ h)− f(x)g(x)

h
=

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)

h
=

= f(x+ h)
g(x+ h)− g(x)

h
+ g(x)

f(x+ h)− f(x)

h
.

(4) In view of (3) it suffices to derive the rule for 1
g
. We have

(1
g
)(x+ h)− (1

g
)(x)

h
=

1
g(x+h)

− 1
g(x)

h
=

g(x)−g(x+h)
g(x+h)g(x)

h
=

=
g(x)− g(x+ h)

g(x+ h)g(x)h
=

1

g(x+ h)g(x)

(
−g(x+ h)− g(x)

h

)
.

�

2.2. The rule for composition. Let f : D → R and g : E → R be
such that f [D] ⊆ E. so that the composition g ◦ f is defined.

2.2.1. Theorem. Let f have a derivative at a point x and let g have a
derivative in y = f(x). Then g ◦ f has a derivative in x and we have

(g ◦ f)′(x) = g′(f(x))f ′(x).
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Proof. By 1.5 we have µ and ν with limh→0 µ(h) = 0 and limk→0 ν(k) = 0
such that

f(x+ h)− f(x) = Ah+ µ(h)h and

g(y + k)− g(y) = Bk + ν(k)k.

To be able to use IV.6.5.1 we will define ν(0) = 0 which does not change the
limit of ν in 0.

Now we have

(g◦f)(x+ h)− (g ◦ f)(x) = g(f(x+ h))− g(f(x)) =

= g(f(x) + (f(x+ h)− f(x)))− g(f(x)) = g(y + k)− g(y)

where k = f(x+ h)− f(x), and hence

(g ◦ f)(x+ h)− (g ◦ f)(x) = Bk + ν(k)k =

= B(f(x+ h)− f(x)) + ν(f(x+ h)− f(x))(f(x+ h)− f(x)) =

= B(Ah+ µ(h)h) + ν(Ah+ µ(h)h)(Ah+ µ(h)h) =

= (BA)h+ (Aµ(h) + ν((A+ µ(h))h)(A+ µ(h)))h.

Now if we define µ(h) = Aµ(h) + (A+ µ(h))ν((A+ µ(h))h) we obtain

(g ◦ f)(x+ h)− (g ◦ f)(x) = (BA)h+ µ(h)h

and since limh→0 µ(h) = 0 (indeed, we have trivially limh→0Aµ(h) = 0, and
limh→0 ν((A + µ(h))h) = 0 by IV.6.5.1 – recall augmenting ν by setting
ν(0) = 0 above) the statement follows from 1.5. �

2.2.2. Note on one-sided derivatives. Unlike the arithmetic rules
2.1, and also unlike the inverse rule 2.3 to follow, one has to be careful with
the one-sided derivatives in composition. Even if x keeps to the right resp.
left of x0, the f(x) can oscilate around the f(x0).

2.3. The rule for inverse.

Theorem. Let f : D → R be an inverse of g : E → R and let g have
a non-zero derivative in y0. Then f has a derivative in x0 = g(y0) and we
have

f ′(x0) =
1

g′(y0)
=

1

g′(f(x0))
.

Proof. We have f(x0) = f(g(y0)) = y0. Thus, the function

F (y) =
y − y0

g(y)− g(y0)
=
y − f(x0)

g(y)− x0
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has a non-zero limit limy→y0 f(y) = 1
g′(y0)

. The function f is continuous

(recall IV.4.2) and since it has an inverse, it is one-to-one. Hence we can use
IV.6.5.1 for F ◦ f to obtain

lim
x→x0

F (f(x)) =
1

g′(y0)
.

Now since

F (f(x)) =
f(x)− f(x0)

g(f(x))− x0
=
f(x)− f(x0)

x− x0
,

the statement follows. �

2.3.1. Note. The point of the previous theorem is that

f ′(x0) exists.

The value follows from 2.2: obviously the derivative of the identical func-
tion id(y) = y is constant 1, and since id(y) = y = f(g(y)) we have
1 = f ′(g(y))g′(y). But, of course, to apply 2.2.1 we have to assume the
existence of the derivative of f .

2.4. Summary. In the following section we will learn how to differen-
tiate x, lnx and sinx. Then, 2.1, 2.2 and 2.3 will provide an algorithm for
differentiating general elementary functions.

3. Derivatives of elementary functions.

It would suffice to present derivatives of constants, of the identity (which
we already know anyway, the first is constant 0 and the other is constant
1), and of sinus and logarithm: every elementary function can be obtained
from these by repeatedly applying the arithmetic constructions, compositions
and taking inverse, and for all this we have differentiation rules. For various
reasons we will be more explicit.

3.1. Polynomials. We have

(xn)′ = nxn−1 for all natural n.

This can be derived by induction using 2.1(3), but we can compute it directly.
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For n = 0 the formula is trivial. Let n > 0. Then

lim
h→0

(x+ h)n − xn

h
= lim

h→0

∑n
k=0

(
n
k

)
xn−khk − xn

h
=

= lim
h→0

(
n
1

)
xn−1h+ h2

∑n
k=2

(
n
k

)
xn−khk−2

h
=

= nxn−1 + lim
h→0

h

n∑
k=2

(
n

k

)
xn−khk−2 = nxn−1.

Consequently we have

(
n∑
k=0

akx
k)′ =

n∑
k=1

akx
k−1.

3.1.1. Negative powers. Also for −n, n natural, we have, by 2.1.4

(x−n)′ =
1

xn
=
−nxn−1

x2n
= −nx−n−1.

3.1.2. Roots and rational powers. By 2.3 we obtain for f(x) = q
√
x

(since g(y) = yq)

( q
√
x)′ =

1

q( q
√
x)q−1

=
1

q
( q
√
x)1−q.

Thus, using 2.2.1 we obtain (again)

(x
p
q )′ =

1

q
( q
√
x
p
)1−qpxp−1 =

p

q
x(

p(1−q)
q

+p−1) =
p

q
x
p−q
q =

p

q
x
p
q
−1.

3.2. Logarithm. We have

(lg x)′ =
1

x
.

Indeed, using V.1.2, V.1.3 and IV.6.5.1 we obtain

lim
h→0

lg(x+ h)− lg x

h
= lim

h→0

lg x+h
h

h
= lim

h→0

1

x

lg(1 + h
x
)

h
x

=
1

x
lim
h→0

lg(1 + h
x
)

h
x

=
1

x
.
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3.3. Exponentials, general powers. By 3.2 and 2.3 we have

(ex)′ =
1

lg′(ex)
=

1
1
ex

= ex.

Consequently, by 2.2,

(ax)′ = (ex lg a)′ = lg a · ex lg a = lg a · ax.

For the general exponent a (albeit for positive x only) we obtain, not sur-
prisingly,

(xa)′ = (ea lg x)′ = (ea lg x)a
1

x
= axa−1.

3.4. Goniometric functions. We have

(sinx)′ = cosx and (cosx)′ = − sinx.

Indeed, by V.3.1.2 and V.3.2,

lim
h→0

sin(x+ h)− sinx

h
= lim

h→0

sinx cosh+ sinh cosx− sinx

h
=

= lim
h→0

sinx(cosh− 1) + sinh cosx

h
= sinx · lim

h→0

cosh− 1

h
+ cosx · lim

h→0

sinh

h
=

= sinx · 0 + cos x · 1 = cos x,

and by V.3.1.1 and 2.2,

(cosx)′ = (sin(
π

2
− x))′ = cos(

π

2
− x) · (−1) = − sinx.

Further we have, by 3.2.1(4),

(tanx)′ =

(
sinx

cosx

)′
=

cosx cosx− sinx(− sinx)

cos2 x
=

cosx + sin2 x

cos2 x
=

1

cos2 x
.

3.5. Cyclometric functions. By 2.3 we obtain

(arcsinx)′ =
1

sin(arcsinx)
=

1√
1− sin2(arcsinx)

=
1√

1− x2
.
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The following formula is of a particular interest:

(arctanx)′ =
1

1 + x2
.

For this realize first (contemplating the rectangular triangle with sides 1 and
tanx) that

cos2 x =
1

1 + tan2 x

and using 2.3 compute

(arctan x)′ =
1

tan′(arctanx)
= cos2(arctanx) =

1

1 + tan2(arctanx)
=

1

1 + x2
.

4. Derivative as a function. Higher order derivatives.

4.1. So far, strictly speaking, we have spoken just about derivatives of
a function in that or other point. In fact, however, a function f : D → R
has often derivatives in all the points of D, or in its substantial part D′. We
then have a function

f ′ : D′ → R

and we speak of this function as of the derivative of f . As we have already
indicated in 1.2, this function is often denoted by

df

dx
or

d

dx
f.

4.2. Derivatives of higher order. The function f ′ can have, again, a
derivative f ′′, called the second derivative of f , and we can also have, further,
the third derivative f ′′′ and so on. We speak of the derivatives of higher order.
Instead of n dashes one uses the symbol

f (n)

and the symbols df
dx

, d
dx
f are in this sense extended to

dnf

dxn
and

dn

dxn
f.
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4.3. Note. The reader has observed that the derivative (in particular
that of lg or of arctan) may be substantially simpler than the original one.
This is not quite such a good news as it may appear. In fact it shows that
when we will stand before the reverse task to differentiation, the integration,
we can expect the results substantially more complex than the originals. And
indeed the means for integration are very limited and integrals of elementary
functions are often not elementary.
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VII. Mean Value Theorems.

1. Local extremes.

1.1. Increasing and decreasing at a point. A function f : D → R
increases (resp. decreases) at a point x if there is an α > 0 such that

x− α < y < x ⇒ f(y) < f(x) and x < y < x+ α ⇒ f(x) < f(y)

(resp. x− α < y < x ⇒ f(y) > f(x) and x < y < x+ α ⇒ f(x) > f(y).

1.1.1. Note. If a function increases resp. decreases in an interval then it
obviously increases resp. decreases in each point of the interval. On the other
hand, if a function (say) increases at a point x there may be no open interval
J 3 x in which the function would increase. For instance, the function

f(x) =

{
x+ 1

2
x sin 1

x
for x 6= 0,

0 for x = 0.

(draw a picture) increases in 0, but does not increase in any open interval J
containing 0.

The question naturally arises whether a function that increases in every
point of J increases in J . This is not straightforward, but see the easy 3.1
below.

1.1.2. Proposition. Let f ′(x) > 0 (resp. < 0). Then f increases (resp.
decreases) in x.

Proof. Recall VI.1.5 with A = f ′(x). Consider α > 0 such that |µ(x)| <
|A| for −α < x < α. Then in the expression

f(x+ h)− f(x) = (A+ µ(h))h

the A+ µ(h) is positive (resp. negative) iff A is, and hence f(x+ h)− f(x)
has the same sign as h (resp. the opposite one). �

1.2. Local extremes. A function f : D → R has a local maximum
(resp. local minimum) M = f(x) at a point x if there is an α > 0 such that
for the points y in D

x− α < y < x ⇒ f(y) ≤ f(x) and x < y < x+ α ⇒ f(x) ≥ f(y)

(resp. x− α < y < x ⇒ f(y) ≥ f(x) and x < y < x+ α ⇒ f(x) ≤ f(y).

61



The common term for local maxima and local minima is

local extremes.

Note. We have emphasized that the condition is applied for the elements
of D only (which we usually do not do, recall the convention in IV.5.1).
For instance, the function f : 〈0, 1〉 → R defined by f(x) = x has a local
minimum 0 in x = 0 and local maximum 1 in x = 1.

1.3. Comparing the definitions 1.1 and 1.2, and using proposition 1.1.2
we immediately obtain

Proposition. If f is increasing or decreasing at a point x. in particular
if it has a non-zero derivative in x then it does not have a local extreme in
x.

2. Mean Value Theorems.

2.1. Theorem. (Rolle Theorem.) Let f be continuous on a compact
interval J = 〈a, b〉, a < b, let it have a derivative on the open interval (a, b)
and let f(a) = f(b). Then there is a point c ∈ (a, b) such that f ′(c) = 0.

Proof. By Theorem IV.5.2 the function f achieves a maximum (and
hence a local maximum) at a point x ∈ J and a minimum (and hence a local
minimum) at a point y ∈ J .

I. If f(x) = f(y): then f is constant on J and hence has the derivative
equal to 0 everywhere in (a, b).

II. If f(x) 6= f(y) then at least one of x, y is neither a nor b. If we denote
it by c we see by 1.3 that f ′(c) = 0. �

2.2. Theorem. Mean Value Theorem, Lagrange Theorem.) Let f be
continuous on a compact interval J = 〈a, b〉, a < b and let it have a derivative
on the open interval (a, b). Then there is a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Define a function F : 〈a, b〉 → R by setting

F (x) = (f(x)− f(a))(b− a)− (f(b)− f(a))(x− a).

62



Then F is continuous on 〈a, b〉, has (by the standard rules from the previous
chapter) a derivative, namely

F ′(x) = f ′(x)(b− a)− (f(b)− f(a)), (∗)

and F (a) = F (b) = 0. Hence we can apply Rolle Theorem 2.1 and (∗) yields
0 = f ′(c)(b− a)− (f(b)− f(a)), that is. f ′(c)(b− a) = f(b)− f(a) and the
statement follows by dividing both sides of this equation by b− a. �

2.2.1. Here is a geometric interpretation. The curve (“diagram of the
function f”) {(x, f(x)) |x ∈ J} has a tangent parallel to the segment con-
necting the point (a, f(a)) with (b, f(b)). See the picture below.

f(c) f(b)

f(a)

a c b

2.2.2. Slight, but often expedient, reformulations. First note that
the formula from 2.2 also holds if b < a (than we of course speak about a c
in (b, a)). If the derivative makes sense between x and x + h we can state
that

f(x+ h)− f(x) = f ′(x+ θh)h with 0 < θ < 1

(compare with the formula in V.1.5). This is often written in the form

f(y)− f(x) = f ′(x+ θ(y − x))(y − x) with 0 < θ < 1.

2.3. Theorem. Generalized Mean Value Theorem, Generalized La-
grange Theorem.) Let f, g be continuous on a compact interval J = 〈a, b〉,
a < b, and let them have derivatives on the open interval (a, b). Let g′ be
non-zero on (a, b). Then there is a point c ∈ (a, b) such that

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
.
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Proof is practically the same as in 2.2. Define a function F : 〈a, b〉 → R
by setting

F (x) = (f(x)− f(a))(g(b)− g(a))− (f(b)− f(a))(g(x)− g(a)).

Then F has a derivative, namely

F ′(x) = f ′(x)(g(b)− g(a))− (f(b)− f(a))g′(x), (∗)

and F (a) = F (b) = 0. Hence we can apply Rolle Theorem again and (∗)
yields 0 = f ′(c)(g(b)− g(a))− (f(b)− f(a))g′(c), that is, f ′(c)(g(b)− g(a)) =
(f(b)−f(a))g′(c). Now by 2.2, g(b)−g(a) = g′(ξ)(b−a) 6= 0 and our formula
immediately follows dividing both sides by (g(b)− g(a))g′(c). �

3. Three simple consequences.

3.1. Proposition. Let f : D → R be continuous on 〈a, b〉 and let it have
a positive (resp. negative) derivative on (a, b) r {a1, . . . , an} for some finite
sequence a < a1 < a2 < · · · < an < b. Then f increases (resp. decreases) on
〈a, b〉.

Proof. Since the statement obviously holds if it holds for the restrictions
to 〈a, a1〉, 〈ai, ai+1〉 and 〈an, b〉, it suffices to prove it disregarding the ai. Let
a ≤ x < y ≤ b. Then we have a c such that f(y) − f(x) = f ′(c)(y − x). If
f ′(c) is positive, f(y) > f(x). �

3.2. Discontinuities of derivatives. Let a derivative of a function
f : J → R where J is an open interval exist on the whole of J . The function
f has to be continuous (recall VI.1.6), but f ′ may be not so. Consider the
f : R→ R defined by setting

f(x) =

{
x2 sin 1

x
for x 6= 0,

0 for x = 0.

For x 6= 0 we obtain, using the rules from VI.2 and VI.3,

f ′(x) = 2x sin
1

x
+ x2 · cos

1

x
·
(
− 1

x2

)
= 2x sin

1

x
− cos

1

x

and hence limx→0 f
′(x) does not exist: the value of f ′ in 1

2kπ+π
2

is −1 + 2
2kπ+π

2

while it is 0 in 1
2kπ

.
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However, f ′(0) does exist and it is equal to 0, since
∣∣∣f(h)−f(0)h

∣∣∣ =
∣∣h sin 1

h

∣∣ ≤
|h|.

3.2.1. The discontinuity of the f ′ above was of the second kind (recall
IV.6.7). This is all that can happen: a derivative cannot have a discontinuity
of the first kind. We have

Proposition. Let limy→x f
′(y) (or limy→x+ f

′(y), limy→x− f
′(y), resp.)

exist. Then f ′(x) (f ′+(x), f ′−(x), resp.) exists and is equal to the respective
limit.

Proof will be done for f ′+. We have, by 2.2.2,

f(x+ h)− f(x)

h
= f ′(x+ θhh), 0 < θh < 1,

and limh→0+ f
′(x+ θhh) = limh→0+ f

′(x+ h) = limy→x+ f
′(y). �

3.3. Unicity of a primitive function. Later on we will be interested in
the task reverse to differentiation (recall VI.4.3), in determining the primitive
function F of f , that is, an F such that F ′ = f . Such an F cannot be
uniquely determined (for instance (x + 1)′ = x′ = 1), but the situation is
fairly transparent. We have

Proposition. Let J be an interval and let F.G : J → R be functions
such that F ′ = G′ = f . Then there is a constant C such that F = G+ C.

Proof. Set H = F − G. Then H ′ = const0 and since H is defined on an
interval we have by 2.2 for any x, y,

H(x)−H(y) = H ′(c)(x− y) = 0. �

3.3.1. Note. The assumption that the domain is an interval is, of course,
essential.
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VIII. Several applications of differentiation.

1. First and second derivatives in physics.

Recall VI.1.4. One of the first motivations (and applications) came in
physics.

1.1. Represent a moving body in the Euclidean space E3 by its position
in time

(x(t), y(t), z(t))

(here, the coordinates x, y, z are the real functions to be analyzed, and the
real argument, representing time, will be denoted by t). The velocity is
then represented by the vector function (that is, a function D → R3 with
coordinates real functions)(

dx

dt
(t),

dy

dt
(t),

dz

dt
(t)

)
. (∗)

1.2. Acceleration. One of the most important concepts of Newtonian
physics (and of physics in general), the force, is connected with the acceler-
ation, the second derivative of (x, y, z),(

d2x

dt2
(t),

d2y

dt2
(t),

d2z

dt2
(t)

)
.

The reader certainly knows that the force is given as M(d
2x
dt2
, d

2y
dt2
, d

2z
dt2

) where
M is the mass.

1.3. Tangent of a curve. The same way as in 1.1 we can express the
tangent of a curve given parametrically as (f1, f2, f3) with fi : J → R real
functions. We have then (f ′1(x0), f

′
2(x0), f

′
3(x0)) the vector determining the

direction of the tangent in the point (f1(x0), f2(x0), f3(x0)), and the tangent
is expressed parametrically as

(f1(x0), f2(x0), f3(x0)) + x(f ′1(x0), f
′
2(x0), f

′
3(x0)), x ∈ R.

1.3. Note. In VI.1.4 we have also mentioned another aspect of the
derivative, the approximation. More on that will come later, in particular in
the section about Taylor’s formula.
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2. Determining local extremes.

2.1. Proposition. For a function f : D → R consider the set E(f)
consisting of all the x ∈ D such that

� x is not an interior point of D, or

� f ′(x) does not exist, or

� f ′(x) = 0.

Then E(f) contains all the points in which there can be a local extreme.
Proof. In all the points that are not in E(f) there is a non-zero derivative.

Use VII.1.2. �

2.2. Notes. 1. When looking for local extremes one should not forget
about the non-interior points and the points without a derivative. Determin-
ing the x such that f ′(x) = 0 does not finish the task.

2. Proposition 1.3.1 provides a list of all possible candidates of a local
extreme. This does not say that all the elements of E(f) are local extremes.
See the following examples.

(a) Define f : 〈0,∞)→ R by setting

f(x) =

{
x sin 1

x
for x 6= 0,

0 for x = 0.

There is no local extreme in the non-interior point 0.
(b) Define f : (0, 2)→ R by setting

f(x) =

{
x for 0 < x ≤ 1,

2x− 1 for 1 ≤ x < 2.

f has not a derivative in x = 1, but there is no extreme there.
(c) f(x) = x3 defined on all the R has no extreme in x = 0 although

f ′(0) = 0.

3. Convex and concave functions

From VII.3.1 w know that the sign of the (first) derivative determines
whether a function increases or decreases. The second derivative determines
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whether a function is convex (“rounded downwards”) or concave (“rounded
upwards).

3.1. We say that a function f : D → R is convex (resp. strictly convex)
on an interval J ⊆ D if for any a, b, c in J such that a < b < c we have

f(c)− f(b)

c− b
− f(b)− f(a)

b− a
≥ 0 (resp. > 0). (∗)

We say that it is concave (resp. strictly concave) on the J if for any for
a < b < c in J we have

f(c)− f(b)

c− b
− f(b)− f(a)

b− a
≤ 0 (resp. < 0).

3.2. The formula for convexity expresses the fact that the values f(b) of
f in the intermediate points between a, c lie below the segment connecting
the points (a, f(a)) and (c, f(c)) in the plane R2. See the following picture.

f(c)

f(a)

f(b)

a b b

The connecting segment is given by

y = f(a) +
f(c)− f(a)

c− a
(x− a), a ≤ x ≤ b,

and if we set x = b we obtain y(b) = f(a) + f(c)−f(a)
c−a (b − a) so that, say,

requiring that the value f(b) is below the segment, that is, f(b) < y(b),
yields

f(c)− f(a)

c− a
− f(b)− f(a)

b− a
> 0. (∗∗)

For x, y > 0 we have X
x
> Y

y
iff X+Y

x+y
> Y

y
(multiply the last identity by

(x + y)x) so that the formula (∗∗) is equivalent with the (∗) for the strict
convexity.
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3.3. Proposition. Let f : D → R be continuous on 〈a, b〉 and let
it have a second derivative on (a, b) r {a1, . . . , an} for some finite sequence
a < a1 < a2 < · · · < an < b. Let f ′′(x) > 0 (≥ 0, ≤ 0, < 0, resp.)
in (a, b) r {a1, . . . , an}. Then f is strictly convex (convex, concave, strictly
concave, resp.) on 〈a, b〉.

Proof. Similarly like in VII.3.1 we can disregard the exceptional points
ai and prove the theorem for f continuous on 〈a, b〉 with the specified second
derivative in (a, b). We will consider, say, f ′′(x) > 0 in this open interval.

By Mean Value Theorem we have have for x < y < z in 〈a, b〉

V =
f(z)− f(y)

z − y
− f(y)− f(x)

y − x
= f ′(v)− f ′(u)

for some x < u < y < v < z. Using the same theorem again we obtain

V = f ′′(w)(v − u)

with u < w < v, hence v − u > 0 and w ∈ (a, b) so that also f ′′(w) > 0 and
V > 0. �

3.4. Inflection. An inflection point of a function f : D → R is an
element x ∈ D such that there is a δ > 0 with (x− δ, x+ δ) ⊆ D such that

– either f is convex on (x− δ, x〉 and concave on 〈x, x+ δ),
– or f is concave on (x− δ, x〉 and convex on 〈x, x+ δ).

From 3.3 we immediately obtain

3.4.1. Corollary. Let J be an interval and let f : J → R have a con-
tinuous second derivative in J . Then we have f ′′(x) = 0 in every inflection
point of f .

3.4.2. Note. Thus, for a function on an interval with continuous second
derivative, we have a list {x | f ′′(x) = 0} containing all inflection points. But
not all the x with f ′′(x) = 0 are necessarily inflection ones. Consider the
functions f(x) = x2n: they are convex on the whole of R, but f(0) = 0.

4. Newton’s Method

(Also known as Newton-Raphson Method.) This is a method of finding a
sucession of approximative solutions of an equation f(x) = 0. It can be very
effective – see 4.3 below.
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4.1. Suppose you wish to solve an equation

f(x) = 0 (∗)

where f is a real function such that f ′ exists. Suppose that the values of f
and of f ′ are not hard to compute. Then the following procedure often yields
a very fast convergence to the solution.

For a b ∈ D consider the point (b, f(b)) on the graph Γ = {(x, f(x)) |x ∈
D} of the function f . Then take the tangent of Γ in this point. This tangent
is the graph of the linear function

L(x) = f(b) + f ′(b)(x− b).

In a reasonably small neighbourhood of b the function L(x) is a good ap-
proximation of the function f and hence we can conjecture that the solution
of

L(x) = 0 (∗∗)

approximates a solution of the equation (∗) above. The solution of (∗∗) is
easy to compute: it is

b̃ = b− f(b)

f ′(b)

(draw a picture).

The point b̃ is much closer to the solution of (∗) then b, and if we repeat the

procedure, the resulting
˜̃
b is much closer again.

4.2. This leads to the following procedure called Newton’s method. To
solve approximatively the equation (∗) above,

� first, choose an approximation a0 (not necessarily a good one, just
something to start with), and

� second, define

an+1 = ãn = an −
f(an)

f ′(an)
.

The resulting sequence
a0, a1, a2, . . .
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(if certain conditions are satisfied) converges to a solution, and often very
fast – see 4.3.

4.2.1. Example. Let us compute the square root of 3, that is the
solution of the equation

x2 − 3 = 0.

We get

an+1 = an −
a2n − 3

2an
=
a2n + 3

2an
.

If we start, say, with a0 = 2, we get

a1 = 1.75,

a2 = 1.732142657,

a3 = 1.73205081

Thus, a1 agrees with with the
√

3 (given in the tables as 1.7320508075) in
two digits. a2 in four digits, and a3 already in eight digits!

4.3. In the example we have seen that (under favourable circumstances)
the error may diminish very rapidly. Let us present an easy estimate under
the condition that the second derivative exists.

Denote by a the solution, that is, an a with f(a) = 0. We have

an+1 − a = an − a−
f(an)

f ′(an)
= an − a−

f(an)− f(a)

f ′(an)
,

and hence by Mean Value Theorem for an α between an and a,

an+1 − a = (an − a)− (an − a)
f(α)

f ′(an)
= (an − a)

(
1− f(α)

f ′(an)

)
and further, using Mean Value Theorem again, this time for the first deriva-
tive f ′, we obtain a β between a and α such that

an+1 − a = (an − a)

(
f ′(an)− f ′(α)

f ′(an)

)
= (an − a)(an − α)

f ′′(β)

f ′(an)

so that, since α is between an and a we obtain taking an upper estimate K
of | f

′′(β)
f ′(an)

| (which does not have to be very large),

|an+1 − a| ≤ |an − a|2K.
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Thus if we start with an error less than 10−1 we have in the next step less
than K · 10−2, then K2 · 10−4, K3 · 10−8, K4 · 10−16, etc., which may be a
very satisfactory convergence indeed, as we have seen at the

√
3 above.

4.4. Note. Needless to say, the choice of a0 is essential. Sometimes
the adjustment comes automatically: in the example 4.2.1 we started with
a0 = 2 “on the right side of the convexity”. If we started “on the wrong
side”, say in 1, we obtain a1 = 2 so that the first step just get us to the
“right side”, and we proceed just with one step delay (draw a picture).

On the other hand, one can really start very badly. Consider f(x) =
−7

4
x4 + 15

4
x2 − 1. Then f(1) = f(−1) = 1, f ′(1) = −f ′(−1) = 1

2
and if we

start with a0 = 1 we obtain

a1 = −1, a2 = 1, a3 = −1, a4 = 1, etc.

5. L’Hôpital Rule

(Also L’Hospital Rule; believed to be discovered by Johann Bernoulli.)

5.1. The simple L’Hôpital Rule. We will have a harder one later;
this one is very easy.

Proposition. Let η > 0. let f, g have deivatives in all the x such that
0 < |x − a| < η, and let limx→a f(x) = limx→a g(x) = 0. Let limx→a

f ′(x)
g′(x)

exist. Then also limx→a
f(x)
g(x)

exists and we have

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Proof. We can define f(a) = g(a) = 0 to obtain continuous functions
on 〈a, x〉 resp. 〈x, a〉 for |x − a| sufficiently small. Furthermore, because

limx→a
f ′(x)
g′(x)

exists, if |x−a| is sufficiently small there are derivatives on (a, x)

resp. (x, a), and the derivative g′ is there non-zero. Therefore we can apply
VII.2.3 and obtain

f(x)

g(x)
=
f(x)− f(a)

g(x)− g(a)
=
f ′(c)

g′(c)
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for some c between a and x. Thus, if 0 < |x − a| < δ we also have 0 <
|c − a| < δ and hence if we choose a δ > 0 such that for 0 < |c − a| < δ we

have |f
′(c)
g′(c)
− L| < ε, we also have for 0 < |x− a| < δ, |f

′(x)
g′(x)
− L| < ε. �

5.1.1. Note. In the previous proof, if x > a then c > a and if x < a
then c < a. Thus we have in fact also proved that, under the corresponding
conditions,

lim
x→a+

f(x)

g(x)
= lim

x→a+

f ′(x)

g′(x)
and lim

x→a−

f(x)

g(x)
= lim

x→a−

f ′(x)

g′(x)
.

5.1.2. Examples. Let us recall the limits from V.1.3 and V.3.2

lim
x→0

lg(1 + x)

x
= lim

x→0

1
1+x

1
= 1, lim

x→0

sinx

x
= lim

x→0

cosx

1
= 1

(of course, we would not be able to compute the derivatives of lg or sin in
VI.3 without knowing these limits beforehand; this is just an illustration).
Or we can compute

lim
x→0

cosx− 1

x2
= lim

x→0

− sinx

2x
= lim

x→0

− cosx

2
=
−1

2
.

5.2. Infinite limits and limits in infinity. To be able to extend
L’Hôpital rule to its full generality we will have to extend our concept of a
limit of a function.

We say that a function f : D → R has a limit +∞ (resp. −∞) at a point
a, and write

lim
x→a

f(x) = +∞ (resp. −∞)

if ∀K ∃δ > 0 such that (0 < |x− a| < δ) ⇒ f(x) > K (resp. < K).

A function f : D → R has a limit b in +∞ (resp. −∞), written

lim
x→+∞

f(x) = b (resp. lim
x→−∞

f(x) = b)

if ∀ε > 0 ∃K such that x > K (resp. x < K) ⇒ |f(x)− b| < ε.

A function f : D → R has a limit +∞ in +∞, written

lim
x→+∞

f(x) = +∞
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if ∀K ∃K ′ such that x > K ′ ⇒ f(x) > K (similarly for limits +∞ in
−∞, −∞ in −∞ and −∞ in +∞).

5.2.1. Remark. The one-sided variants of the previous definitions are
obvious. Note that the limits in +∞ and in −∞ are one-sided as they are.

5.3. Scrutinizing the proof of 5.1 we see that this Proposition also holds
for infinite limits in finite points, and also for the one-sided ones.

5.4. Proposition. Let η > 0, let f, g have derivatives in all the x such
that 0 < |x−a| < η and let limx→a |g(x)| = +∞. Let limx→a

f ′(x)
g′(x)

exist (finite

or infinite). Then also limx→a
f(x)
g(x)

exists and we have

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Proof. This proof will not be quite so transparent as that of 5.1, although
the principle is similar. We cannot, of course, use the trick of defining the
values in a as zero.

We obviously have

f(x)

g(x)
=

(
f(x)− f(y)

g(x)− g(y)
+

f(y)

g(x)− g(y)

)
g(x)− g(y)

g(x)
.

Thus, for a suitable ξ between x and y we have

f(x)

g(x)
=

(
f ′(ξ)

g′(ξ)
+

f(y)

g(x)− g(y)

)
g(x)− g(y)

g(x)
. (∗)

For technical reasons we will proceed in three alternative cases.

I. limx→a
f ′(x)
g′(x)

= 0:

Choose a δ1 > 0 such that for 0 < |x− a| < δ1 we have |f
′(x)
g′(x)
| < ε. Fix a

y with 0 < |y − a| < δ1. Further, choose a δ with 0 < δ < δ1 such that

0 < |x− a| < δ ⇒
∣∣∣∣ f(y)

g(x)− g(y)

∣∣∣∣ and

∣∣∣∣g(y)

g(x)

∣∣∣∣ < 1.

Then by (∗) we have for 0 < |x− a| < δ∣∣∣∣f(x)

g(x)

∣∣∣∣ < (ε+ ε)2 = 4ε
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and hence limx→a
f(x)
g(x)

= 0

II. limx→a
f ′(x)
g′(x)

= L finite.

Set h(x) = f(x) − Lg(x). Then h′(x) = f ′(x) − Lg′(x) and we have
h(x)
g(x)

= f(x)
g(x)
− L and h′(x)

g′(x)
= f ′(x)

g′(x)
− L. Apply the previous step for h(x)

g(x)
.

III, limx→a
f ′(x)
g′(x)

= +∞ (−∞ is quite analogous):

For K choose a δ1 > 0 such that for 0 < |x− a| < δ1 we have f ′(x)
g′(x)

> 2K.

Fix a y with 0 < |y − a| < δ1. Choose a δ with 0 < δ < δ1 such that

0 < |x− a| < δ ⇒
∣∣∣∣ f(y)

g(x)− g(y)

∣∣∣∣ < K and

∣∣∣∣g(y)

g(x)

∣∣∣∣ < 1

2
.

Then by (∗) we have for 0 < |x− a| < δ

f(x)

g(x)
> (2K −K)(1− 1

2
) >

1

2
K

and the statement follows. �

5.5. In the following, “�” stands for a, a+, a−,+∞ or −∞. To have a
derivative “close to �“ means that the function in question has a derivative
in (a− δ, a+ δ)r {a} for some δ > 0, (a, a+ δ) for some δ > 0, (a− δ, a) for
some δ > 0, (K,+∞) for some K, or (−∞, K) for some K, in this order.

Theorem. (L’Hôpital Rule) Let limx→� f(x) = limx→� g(x) = 0 or

limx→� |g(x)| = +∞. Let f, g have derivative close to � and let limx→�
f ′(x)
g′(x)

=

L (finite or infinite) exist. Then limx→�
f(x)
g(x)

exists and is equal to L.
Proof. The cases of � = a, a+ or a− are contained in 5.1, 5.3 and 5.4.

Thus we are left with +∞ and −∞. They are quite analogous and hence we
will discuss just the former.

By IV.6.5.1 adapted for limits in +∞,

lim
x→+∞

H(x) = lim
x→0+

H(
1

x
).

So if we set F (x) = f( 1
x
) and G(x) = g( 1

x
) we have F ′(x) = f( 1

x
) · 1

x2
and

G′(x) = g( 1
x
) · 1

x2
, and

lim
x→0+

F ′(x)

G′(x)
= lim

x→0+

f ′( 1
x
) · 1

x2

g′( 1
x
) · 1

x2

= lim
x→0+

f ′( 1
x2

)

g′( 1
x2

)
= lim

x→+∞

f ′(x)

g′(x)
= L.
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Hence by the previous facts,

lim
x→+∞

f(x)

g(x)
= lim

x→0+

F (x)

G(x)
= L. �

5.5.1. Example. Let a > 1. By 5.5,

lim
x→+∞

ax

xn
= lim

lg a · ax

nxn−1
= lim

(lg a)2 · ax

n(n− 1)xn−2
= · · · = lim

x→+∞

(lg a)n · ax

n!
= +∞.

Thus, for arbitrarily small ε > 0 the exponential function (1 + ε)x grows to
infinity faster than any polynomial.

Or, for any b > 0,

lim
x→+∞

xb

lg x
= lim

bxb−1

1
x

= lim
x→+∞

bxb = +∞.

Thus, for arbitrarily small positive b the function xb (for instance, any root
n
√
x) grows to infinity faster than logarithm.

5.6. Indeterminate expressions. This is a common name of limits of
functions obtained by simple expressions from functions f , g where we know
lim f and lim g but the arithmetic rules or similar operations fail. They are
indicated by expressions pointing out the trouble. Often we are helped by
using the L’Hôpital rule.

5.6.1. The types 0
0

and ∞
∞ . Here we are often helped by using Theorem

5.5: the task in f, g may be indeterminate while the corresponding one in
f ′, g′ may make perfect sense.

Note. Needless to say, differentiating is a task of type 0
0
.

5.6.2. The type 0 · ∞. This can be made to the type 0
0

or ∞∞ rewriting
f(x)g(x) as

f(x)
1

g(x)

or
g(x)

1
f(x)

,

whichever is more expedient.

5.6.3. The type ∞−∞. This is slightly harder. Often the following
rewriting helps:

f(x)− g(x) =
1
1

f(x)

− 1
1

g(x)

=

1
g(x)
− 1

f(x)

1
f(x)g(x)

.
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5.6.4. The types 00, 1∞ and ∞0. We use the fact that f(x)g(x) =
eg(x)·lg f(x) and that ex is continuous. Thus it suffices to be able to compute
lim(g(x) · lg f(x)); in the first case we have the type 0 · (−∞), in the second,
∞ · 0, and in the last one, 0 · (+∞).

6. Drawing graphs of functions

Suppose we would like to get an idea of the behaviour of a function f
presented by a formula. It becomes apparent viewing the graph of f ,

Γ = {(x, f(x)) |x ∈ D},

if we can draw it.
For drawing Γ the facts we have learned can be of a great help.

6.1. First, the formula can give us an information about continuity and
discontinuity. L’Hôpital rule can help with the limits (also with the one-sided
ones) in the critical points, and with the asymptotic behaviour if the domain
is not bounded.

6.2. Then try to find the points

· · · < ai < ai+1 < · · ·

in which f(ai) = 0. In the intervals (ai, ai+1) we note whether the function
is positive or negative.

6.3. Next, consider the first derivative and try to find the points

· · · < bi < bi+1 < · · ·

in which f ′(bi) = 0 or in which the derivative does not exist. In the intervals
(bi, bi+1) note the sign to learn whether the function increases or decreases.
At the bi where the sign changes we have local extremes.

Determine f(bi) and if f ′(bi) = 0 draw the tangent in (bi, f(bi)) (parallel
with the x-axis). Whether the f(bi) is a local extreme or not, it will be
handy for the curve Γ to lean against. If f ′(bi) does not exist but there are
(distinct) one-sided derivatives, draw the “half-tangents”.
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It may also help to draw the tangents in (ai, 0) – the more tangents one
has to lean against the easier is the final (approximate) drawing the curve.

6.4. Now consider the second derivative and try to find the

· · · < ci < ci+1 < · · ·

in which f ′′(ci) = 0 or in which the second derivative does not exist. In the
intervals (ci, ci+1) note the sign to learn whether the function is convex (that
is, rounded downwards) or concave (rounded upwards). In (ci, f(ci)) where
f ′′(ci) = 0 draw tangents (these are usually very helpful, approximating the
curve very closely).

6.5. Now it is usually very easy to draw a curve between the tangents
(following the convexity and concavity).

6.5. Note. 1. We may not be able to determine all the values above.
But even a part of them may present quite a good image.

2. Needless to say, for solving the equations f(x) = 0, f ′(x) = 0 and
f ′′(x) = 0 we can use Newton’s Method. But often just a good estimate
suffices. For determining useful limits and asymptotics, L’Hôpital rule is
often of a help.

6.7. Exercises. 1. Draw the graph the function f from 4.4 and see why
the Newton’s method with the badly chosen a0 failed.

2. Draw the graph of f(x) = 4x
1+x2

(with domain the whole of R).

2. Draw the graph of f(x) = e
1
x (with domain Rr {0}).

7. Taylor Polynomial and Remainder

7.1. By VI.1.5, a function with a derivative at a point a can be approxi-
mated by the linear function (first degree polynomial)

p(x) = f(a) + f ′(a)(x− a).

This polynomial p is characterized by the fact that it agrees with f in
p(0)(a) = f (0)(a) = f(a) and p(1)(a) = f (1)(a).
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It is natural to conjecture that if we consider a polynomial p of degree n
such that

p(0)(a) = f (0)(a), p(1)(a) = f (1)(a), . . . , p(n)(a) = f (n)(a) (∗)

(we think of the f itself as of its own 0-th derivative) we will get, with the
growing n, better and better fit, that is, the remainder R(x) in

f(x) = p(x) +R(x)

will be getting smaller. This is (with exceptions) really the case as we will
prove in this section.

7.2. Taylor polynomial. First we will see that the conditions (∗)
uniquely determine a polynomial p of degree n. If p(x) =

∑n
k=0 bk(x− a)k

we have

p′(x) =
n∑
k=1

kbk(x−a)k−1, p′′(x) =
n∑
k=2

k(k−1)bk(x−a)k−2, . . . , p(n)(x) = n!bn,

that is,

p(1)(x) = 1 · b1 + (x− a)
n∑
k=2

kbk(x− a)k−2,

p(2)(x) = 1 · 2 · b2 + (x− a)
n∑
k=3

k(k − 1)bk(x− a)k−3,

p(3)(x) = 1 · 2 · 3 · b3 + (x− a)x
n∑
k=4

k(k − 1)(k − 2)bk(x− a)k−4,

. . . ,

p(n)(x) = n! · bn

so that if p(k)(a) = f (k)(a) for k = 0, . . . , n we have

bk =
1

k!
p(k)(a) =

f (k)(a)

k!
, k = 0, . . . , n.

The resulting polynomial

n∑
k=0

f (k)(a)

k!
(x− a)k
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is called the Taylor polynomial of degree n of the function f (in a).

7.3. Theorem. Let a function f have derivatives f (k), k = 0, . . . , n + 1
in an interval J = (a−∆, a+ ∆). Then we have for all x ∈ J

f(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k +

f (n+1)(ξ)

(n+ 1)!
(x− a)n+1

where ξ is a real number between x and a.
Proof. Consider the function of real variable t (x is viewed as a constant)

R(t) = f(x)−
n∑
k=0

f (k)(t)

k!
(x− t)k.

Thus, R(x) = 0 and R(a) = f(x)−
∑n

k=0
f (k)(a)
k!

(x−a)k is the remainder, the
error when replacing f by its Taylor polynomial.

For the derivative of R we obtain, using the rules for differentiating sums
and products (and also the rule for composition taking into account that
d
dt

(x− t) = −1),

dR(t)

dt
= −

n∑
k=0

f (k+1)(t)

k!
(x− t)k +

n∑
k=1

f (k)(t)

(k − 1)!
(x− t)k−1.

Replacing the k in the first summand and the k− 1 in the second summand
by r we obtain

dR(t)

dt
= −

n∑
r=0

f (r+1)(t)

r!
(x− t)r +

n−1∑
r=0

f (r+1)(t)

r!
(x− t)r = −f

(n+1)(t)

n!
(x− t)n.

Now take any g such that g′ is non-zero between a and x. Since R(x) = 0,
we obtain from VII.2.3 that

R(a)

g(a)− g(x)
= −f

(n+1)(ξ)

n!g′(ξ)
(x− ξ)n

for a ξ between a and x.
If we now set g(t) = (x − t)n+1 we have g′(t) = −(n + 1)(x − t)n and

g(x) = 0 so that

R(a) = −(x− t)n+1 f (n+1)(ξ)

−n!(n+ 1)(x− ξ)n
(x− ξ)n = (x− t)n+1f

(n+1)(ξ)

(n+ 1)!
,
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the remainder from the statement. �

7.4. Notes. 1. Choosing g(t) = (x − t)n+1 belongs to Lagrange, and
one often speaks of the remainder in our formulation as of the remainder in
Lagrange form. Note that it is very easy to remember: one just takes one
more summand with f (n+1)(ξ) replacing f (n+1)(a).

One can take, of course, simpler g, but the results are not quite so satis-
factory. If we set g(t) = t we obtain

R(a) =
f (n+1)(ξ)

n!
(x− ξ)n(x− a),

the so called Cauchy remainder formula, not quite so transparent.
2. For n = 0 we obtain

f(x) = f(a) + f ′(ξ)(x− a),

the Mean Value Theorem.
3. The remainder often diminishes quickly (see the examples below),

sometimes not quite so (for instance if we try to compute the logarithm lg
with the center in a = 1).

It can also happen, though, that the whole of the function is in the
remainder. Consider

f(x) =

{
e−

1
x2 for x 6= 0,

0 for x = 0.

Then f has derivatives of all orders, and f (k)(0) = 0 for all k.

7.5. Examples. For instance for the exponential we obtain

ex = 1 +
x

1!
+
x2

2!
+ · · ·+ xn

n!
+ eξ

xn+1

(n+ 1)!
,

or for the sinus,

sinx =
x

1!
− x3

3!
+
x5

5!
− · · · ± x2n+1

(2n+ 1)!
± cos ξ

x2n+2

(2n+ 2)!
.

In both cases the remainder rapidly decreases.
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8. Osculating circle. Curvature.

8.1. The value f ′(x) of the first derivative determines how fast the func-
tion increases or decreases in x, regardless other data concerning f or x.

Since the second derivative f ′′ determines whether the function f is con-
vex or concave one might, just for a moment, conjecture that it should deter-
mine the curvature, that is, that the value of f ′′(x) should tell us how much
the graph is bent in the vicinity of x.

Even the most primitive examples, however, show that it cannot be quite
so simple. Consider f(x) = x2. The second derivative is constant 2, while
the bending is not constant at all: the curve is rounded close to x = 0 but
gets very flat with increasing x.

8.2. Osculating circle. Similarly like the slope of the function was
apparent from the tangent (and therefore, from the first derivative), that
is, the straight line approximating f , the problem of curvature is naturally
aproached by trying to find, instead of a straight line, a circle that is a good
approximation of the graph. It will be a circle touching the graph of f and
agreeing with f in the first derivative (that is, having a common tangent in
the point in question) and, moreover, also agreeing in the value of the second
derivative. Such circle is called

the osculating circle.

8.2.1. So consider a point x0 and suppose that

� f has in x0 a second derivative, and

� f ′′(x0) 6= 0 (“f is convex or concave in the vicinity of x0”).

To simplify the notation we will write

y0 = f(x0), y′0 = f ′(x0) and y′′0 = f ′′(x0).

The equation of the circle with the center in (a, b) and radius r is

(x− a)2 + (y − b)2 = r2 (∗)

and hence if k is a function defined in the vicinity of x0 whose graph is a
part of the circle (∗) we have

(x− a)2 + (k(x)− b)2 = r2 (1)

83



and taking the first and second derivatives of both sides of the equation (1)
(and in the first case also dividing by 2) we obtain

(x− a) + (k(x)− b)k′(x) = 0 (2)

1 + (k′(x))2 + (k(x)− b)k′′(x) = 0. (3)

Now if k agrees with f as desired we have k(x0) = y0, k
′(x0) = y′0 and

k′′(x0) = y′′0 and obtain from (1), (2) and (3) the following system of equa-
tions.

(x0 − a)2 + (y0 − b)2 = r2 (1y)

(x0 − a) + (y0 − b)y′0 = 0 (2y)

1 + (y′0)
2 + (y0 − b)y′′0 = 0. (3y)

From (2y) we obtain
(x0 − a) = −(y0 − b)y′0

so that, by (1y),
(y0 − b)2(1 + (y′0)

2) = r2

and since, by (3y), (y0 − b) = −1+(y′0)
2

y′′0
, we can conclude the following

8.2.2. Proposition. The radius of the osculation circle of f in the point
x0 is

r =
(1 + (f ′(x0))

2)
3
2

|f ′′(x0)|
.

�

Note. Now we can also easily compute the coordinates of the a, b of the
center. This can be left to the reader as an easy exercise.

8.3. Curvature. the curvature of the (graph of) the function f is the
inverse 1

r
of the radius r of the osculating circle. Thus we have

8.3.1. Proposition. The curvature of f in the point x is

r =
|f ′′(x)|

(1 + (f ′(x))2)
3
2

.

�

Note. We see that the conjecture about f ′′(x) determining the curvature
was not so bad, after all. The curvature indeed linearly depends on the second
derivative; only, its value has to be adjusted by 1

(1+(f ′(x))2)
3
2

.
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2nd semester

IX. Polynomials and their roots

1. Polynomials

1.1. We are interested in real analysis but we will need some basic facts
about polynomials with coefficients and variables in the field

C

of complex numbers.

From Chapter I, 3.4, recall the absolute value |a| =
√
a21 + a22 of the

complex number a = a1 + a2i and the triangle inequality

|a+ b| ≤ |a|+ |b|.

Further recall the complex conjugate a = a1 − a2i of a = a1 + a2i and the
facts that

a+ b = a+ b, ab = ab and |a| =
√
aa.

1.1.1. Note that

a+ a and aa are always real numbers.

1.2. Degree of a polynomial. If the coefficient an in the polynomial

p ≡ anx
n + · · ·+ a1x+ a0

is not 0 we say that the degree of p is n and write

deg(p) = n.

This leaves out p = const0 which is usually not given a degree.

1.2.1. We immediately see that

deg(pq) = deg(p) + deg(q).
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1.3. Dividing polynomials. Consider polynomials p, q with degrees
n = deg(p) ≥ k = deg(q),

p ≡ anx
n + · · ·+ a1x+ a0,

q ≡ bkx
k + · · ·+ b1x+ b0.

Subtracting an
bk
xn−kq(x) from p(x) we obtain zero or a polynomial p1 with

deg(p1) < n, and
p(x) = c1x

n1q(x) + p1(x).

If deg(p1) ≥ deg(q) we similarly obtain p1(x) = c2x
n2q(x) + p2(x) and re-

peating this procedure we finish with

p(x) = s(x)q(x) + r(x)

with r = const0 or deg(r) < deg(q). One speaks of the r as of the remainder
when dividing p by q.

1.3.1. An important observation. If the coefficients of p and q are
real then also the coefficients of s and r are real.

2. Fundamental Theorem of Algebra.
Roots and decomposition.

2.1. A root of a polynomial p is a number x such that p(x) = 0. A
polynomial with real coefficients does not have to have a real root (consider
for example p ≡ x2 + 1) but in the field of complex numbers we have

Theorem. (Fundamental Theorem of Algebra) Each polynomial p of
deg(p) > 0 with complex coefficients has a complex root.3

2.2. Decomposition of complex polynomials. Recall the obvious
formula

xk − αk = (x− a)(xk−1 + xk−2α + · · ·+ xαk−2x+ αk−1)

3This theorem, which is, rather, a theorem of analysis or geometry, has several proofs
based on different principles. One of them is in XXIII.3 below.
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and denote the polynomial xk−1+xk−2α+· · ·+xαk−2x+αk−1 (in x) of degree
k − 1 by sk(x, α). If α1 is a root of p(x) =

∑n
k=0 akx

k of degree n we have

p(x) = p(x)− p(α1) =
n∑
k=0

akx
k −

n∑
k=0

akα
k
1 =

=
n∑
k=0

ak(x
k − αk1) = (x− α1)

n∑
k=0

aksk(x, α1)

where the polynomial p1(x) =
∑n

k=0 aksk(x, α) has by 1.2.1 degree precisely
n− 1. Repeating the procedure we obtain

p1(x) = (x− α2)p2(x), p2(x) = (x− α3)p3(x), etc.

with deg(pk) = n− k, and ultimately

p(x) = a(x− α1)(x− α2) · · · (x− αn) (∗)

with a 6= 0.

2.3. Proposition. A polynomial of degree n has at most n roots.
Proof. Let x be a root of p(x) = a(x − α1)(x − α2) · · · (x − αn). Then

(x − α1)(x − α2) · · · (x − αn) = 0 and hence some of the x − αk has to be
zero, that is, x = αk. �

2.3.1. The unicity of the coefficients. So far we have worked with a
polynomial as with the expression p(x) = anx

n + · · ·+ a1x+ a0. Now we can
prove that it is determined by the function p. We have

Proposition. The coefficients ak in the expression p(x) = anx
n + · · · +

a1x+ a0 are uniquely determined by the function (x 7→ p(x)). Consequently,
this function also determines deg(p).

Proof. Let p(x) = anx
n + · · · + a1x + a0 = bnx

n + · · · + b1x + b0 (any of
ak, bk may be zero). Then anx

n + · · · + a1x + a0 − bnxn − · · · − b1x − b0 =
(an− bn)xn + · · ·+ (a1− b1)x+ (a0− b0) has infinitely many roots and hence
cannot have a degree. Thus, ak = bk for all k. �

2.3.2. Proposition. The polynomials s, r obtained when dividing poly-
nomial p by a polynomial q as in 1.3 are uniquely determined.

Proof. Let p(x) = s1(x)q(x)+r1(x) = s2(x)q(x)+r2(x). Then q(x)(s1(x)−
s2(x)) + (r1(x)− r2(x)) is a zero polynomial and since deg(q) > deg(r1 − r2)
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(if the last is determined at all), s1 = s2. Then r1 − r2 ≡ 0 and hence also
r1 = r2. �

2.4. Multiple roots. On the other hand, p(x) does not have to have
deg(p) many distinct roots: see for instance p(x) = xn with only one root,
namely zero. The roots αk in the decomposition (∗) can appear several times,
and, after suitable permutation of the factors, (∗) can be rewritten as

p(x) = a(x− β1)k1(x− β2)k2 · · · (x− βr)kr with βk distinct. (∗∗)

The power kj is called multiplicity of the root βj and we have
∑r

j=1 kj = n.

2.4.1. Proposition. The multiplicity of a root is uniquely defined. Con-
sequently, the decomposition (∗∗) is determined up to the permutation of the
factors.

Proof. Suppose we have p(x) = (x−β)kq(x) = (x−β)`r(x) such that β is
a root of neither q nor r. Suppose k < `. Dividing p(x) by (x− β)k we obtain
(using the unicity of division, see 2.3.2 above) that q(x) = (x = β)`−kr(x) so
that β is a root of p, a contradiction. �

2.5. Note. The set of all complex polynomials forms an integral domain
(similarly like the set of integers). Now q|p (q divides p) if p(x) = s(x)q(x)
and both q|p and q|p iff there is a number c 6= 0 such that p(x) = c · q(x).
The primes in this division are the (equivalence classes of) binoms x−α. In
the propositions above we have seen that in the integral domain of complex
polynomials we have unique prime decomposition.

3. Decomposition of polynomials
with real coefficients.

3.1. Proposition. Let the coefficients an of a polynomial p(x) = anx
n +

· · ·+ a1x+ a0 be real. Let α be a root of p. Then the complex conjugate α is
also a root of p.

Proof. We have (recall 1.1) p(α) = anα
n + · · ·+ a1α+ a0 = anα

n + · · ·+
a1α + a0 = anαn + · · ·+ a1α + a0 = anαn + · · ·+ a1α + a0 = 0 = 0. �

3.2. Proposition. Let α be a root of multiplicity k of a polynomial p
with real coefficients. Then the multiplicity of the root α is also k.
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Proof. If α is real there is nothing to prove. Now let α not be real. Then
we have

p(x) = (x− α)(x− α)q(x) = (x2 − (α + α)x+ αα)q(x)

and since x2 − (α + α)x + αα has real coefficients (recall 1.1.1), q also has
real coefficients (recall 1.3.1). Now if α is a root of q again we have another
root α of q, and the statement follows inductively. �

3.3. The trinoms x2 + βx + γ = x2 − (α + α)x+ αα have no real roots:
they already have roots α and α, and cannot have more by 2.3. They are
called irreducible trinoms,

3.4. From 2.4, 3.1 and 3.2 we now obtain

3.4.1. Corollary. Let p be a polynomial of degree n with real coefficients.
Then

p(x) = a(x−β1)k1(x−β2)k2 · · · (x−βr)kr(x2 +γ1x+ δ1)
`1 · · · (x2 +γsx+ δs)

`s

with βj, γj, δj real, x2 + γjx+ δj irreducinle and
∑r

j=1 kj + 2
∑s

j=1 `j = n (s
can be equal to 0).

3.4.1. Note. Thus, in the integral domain of real polynomials we have
a greater variety of primes. Besides the x − β we also have the ireeducible
x2 + γx+ δ.

4. Sum decomposition of rational functions.

4.1. We have already used the term integral domain in Notes 2.5 and
3.4.1. To be more specific, an integral domain is a commutative ring J with
unit 1 and such that for a, b ∈ J , a, b 6= 0 implies ab 6= 0

As in the domain Z of integers, in a general integral domain (and in
particular in the domain of polynomials with coefficients in C resp. R) we
say that a divides b and write a|b if there is an x such that b = xa. a and b
are equivalent if a|b and b|a; we write a ∼ b.

The greatest common divisor a, b is a d such that d|a and d|b and such
that whenever x|a and x|b then x|d. The unit divides every a; elements a
and b are coprime (or relatively prime) if they have (up to equivalence) no
other common divisor.
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4.2. Theorem. Let J be an integral domain and let us have a function
ν : J → N and a rule of division with remainder for a, b 6= 0 and b not
dividing a,

a = sb+ r with ν(r) > ν(b).

Then for any a, b 6= 0 there exist x, y such that xa+yb is the greatest common
divisor of a, b.

Proof. Let d = xa + yb with the least possible ν(d). Suppose d does not
divide a. Then

a = sd+ r with ν(r) < ν(d).

But then (1 − sx)a − syb = r and ν((1 − sx)a − syb) = ν(r) < ν(d), a
contradiction. Thus, d|a, and for the same reason d|b. On the other hand,
if c|a and c|b then obviously c|(xa + yb). Thus. d is the greatest common
divisor. �

4.2.1. Note. For the integral domain of integers (with ν(n) = |n|)
this was proved by Bachet (16.-17. century), in the more general form – in
particular for our polynomials – this is by Bézout (18.century). One usually
speaks of Bézout lemma; Bachet-Bézout Theorem should be appropriate.

4.3. A rational function (in one variable) is a complex or real function
of one (complex resp. real variable) that can be written as

P (x) =
p(x)

q(x)

where p, q are polynomials.

4.3.1. Theorem. A complex rational function P (x) = p(x)
q(x)

can be written
as

P1(x) +
∑
j

Vj(x)

where P1(x) is a polynomial and each of the expressions Vj(x) is of the form

A

(x− α)k

where A is a number and α is a root of the polynomial q with multiplicity at
least k.
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Proof by induction on deg(q). The statement is trivial for deg(q) = 0.
For deg(q) = 1 (and hence q(x) = C(x− α)) we obtain from 1.3 that

p(x) = s(x)q(x) +B

and
p(x)

q(x)
= s(x) +

B′

x− α
where B′ =

B

C
.

Now let the theorem hold for deg(q) < n. It suffices to prove it for
p(x)

(x−α)q(x) with deg q < n. This can be written, by the induction hypothesis as

P1(x)

x− α
+
∑
j

Vj(x)

x− α
.

If Vj = A
(x−α)k the corresponding summand will be A

(x−α)k+1 . If it is A
(x−β)k

with β 6= α we realize first that the greatest common divisor of (x− α) and
(x− β)k is 1 and hence by 4.2 we have polynomials u, v such that

u(x)(x− α) + v(x)(x− β)k = 1

so that

A

(x− α)(x− β)k
=
A(u(x)(x− α) + v(x)(x− β)k)

(x− α)(x− β)k
=

Au(x))

(x− β)k
+

Av(x)

(x− α)

and by induction hypothesis both of the last summands can be written as
desired. �

4.3.2. Theorem. A real rational function P (x) = p(x)
q(x)

can be written as

P1(x) +
∑
j

Vj(x)

where P1(x) is a polynomial and each of the expressions Vj(x) is of the form

A

(x− α)k

where A is a number and α is a root of the polynomial q with multiplicity at
least k or of the form

Ax+B

(x2 + ax+ b)k
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where x2 + ax+ b is some of the ireeducible trinoms from 3.4.1 and k is less
or equal to the corresponding `.

Proof can be done following the lines of the proof of 4.3.1, only distin-
guishing more cases of the relative primeness of the x− α and x2 + ax+ b.

With careful checking it can be also deduced from 4.3.1: namely, if a root
α is not real we have to have with each

A

(x− α)k

a summand
B

(x− α)k

with the same power k: else, the sum would not be real. Now we have

A

(x− α)k
+

B

(x− α)k
=

A(x− α) +B(x− α)

(x2 − (α + α)x+ αα)k
=

A1x+B1

(x2 + ax+ b)k

and again we have to check that the A1, B1 have to be real.
In fact, the variation of the proof of 4.3.1 may be less laborious then the

latter, but in the latter we perhaps (even if we do not do the details) see
better what is happening. �

4.3.3. Note. In practical computing one simply takes into account that
the expression as in 4.3.1 or 4.3.2 is possible and obtains the coefficients A
resp. A and B as solutions of a system of linear equations.
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X. Primitive function (indefinite integral).

1. Reversing differentiation

1.1. In Chapter VI we defined a derivative of a function and learned how
to compute the derivatives of elementary functions.

Now we will reverse the task. Given a function f we will be interested in
a function F such that F ′ = f . Such a function F will be called the primitive
function, or indefinite integral of f (in the next chapter we will discuss a basic
definite one, the Riemann integral).

In differentiation we had, first, a derivative of a function at a point, which
was a number, and then we defined a derivative of a function f as a function
f ′ : D → R, provided f had a derivative f ′(x) in every point x of a domain
D. In taking the primitive function we have nothing like the former. It will
be always a search of a function (the F above) associated with a given one.

1.2. Unlike a drivative f ′ that is uniquely determined by the function
f , the primitive function is not, for obvious reasons: the derivative of a
constant C is zero so that if F (x) is a primitive function of f(x) then so is
any F (x) + C. But the situation is not much worse than that, as we have
already proved in VIII.3.3. We have

1.2.1. Fact. If F and G are primitive functions of F on an interval J
then there is a constant C such that

F (x) = G(x) + C

for all x ∈ J .

1.3. Notation. Primitive function of a function f is often denoted by∫
f

Instead of this concise symbol we equally often use a more explicit∫
f(x)dx.

This latter is not just an elaborate indication what the variable in question is
(as in

∫
f(x, y)dx). In Section 4 it will be of a great advantage in computing

93



an integral by means of the substitution method. But its natural meaning
will be even more apparent in connection with the definite integral in the
next chapter. See XI.2.5, XI.2.6 and XI.5.5.1.

Since a primitive function is not uniquely determined, the expression
“F =

∫
f ” should be understood as “F is a primitive function of f ”, not as

an equality of two entities (we have 1
2
x2 =

∫
xdx and 1

2
x2 + 5 =

∫
xdx but

we cannot conclude from these two “equalities” that 1
2
x2 = 1

2
x2 + 5). To be

safer one usually writes∫
f(x)dx = F (x) + C or

∫
f = F (x) + C,

but even this can be misleading: the statement 1.2.1 holds for an interval
only and the domains of very natural functions are not always intervals; see
2.2.2.2 below. One has to be careful.

2. A few simple formulas.

2.1. Reversing the basic rule of differentiation we immediately obtain

Proposition. Let f, g be functions with the same domain D and let a, b
be numbers. Let

∫
f and

∫
g exist on D. Then

∫
(af+bg) exists and we have∫

(af + bg) = a

∫
f + b

∫
g.

2.1.1. Note. This is the only arithmetic rule for integration. For prin-
cipial reasons there cannot be a formula for

∫
f(x)g(x)dx or for

∫ f(x)
g(x)

dx, see
2.2.2.1 and 2.3.1.

2.2. Reversing the rule for differentiating xn with n 6= −1 we obtain∫
xndx =

1

n+ 1
xn+1.

(In fact, this does not hold for integers n only. If D is {x ∈ R |x > 0} then
we have by VI.3.3 the formula∫

xadx =
1

a+ 1
xa+1 for any real a 6= −1.)
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Hence, using 2.1 we have for a polynomial p(x) =
∑n

k=0 akx
k,∫

p(x)dx =
n∑
k=0

ak
k + 1

xk+1.

2.2.1. For n = −1 (and domain Rr {0}) we have the formula∫
1

x
dx = lg |x|.

(Indeed, for x > 0 we have |x| = x and hence (lg |x|)′ = 1
x
. For x < 0 we

have |x| = −x and hence (lg |x|)′ = (lg(−x))′ = 1
−x · (−1) = 1

x
again.)

2.2.2. Notes. 1. This last formula indicates that there can hardly be a
simple rule for integration f(x)

g(x)
in terms on

∫
f and

∫
g: this would mean an

arithmetic formula producing lg x from x =
∫

1 and 1
2
x2 =

∫
x.

2. The domain of the function 1
x

is not an interval. Note that we have,
a.o., ∫

1

x
dx =

{
lg |x|+ 2 for x < 0,

lg |x|+ 5 for x > 0.

which shows that using the expression
∫
f(x)dx = F (x) + C is not without

danger.

2.3. For goniometric function we immediately obtain∫
sinx = − cosx and

∫
cosx = sinx.

2.3.1. Note. In general, a primitive function of an elementary function
(although it always exists as we will see in the next chapter) may not be
elementary. One such is ∫

sinx

x

(proving this is far beyond our means, you have to believe it). Now we
have an easy

∫
1
x

and
∫

sinx; thus there cannot be a rule for computing∫
f(x)g(x)dx in terms of

∫
f and

∫
g.
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2.4. For the exponential we have, trivially,∫
exdx = ex and by VI.3.3 more generally

∫
axdx =

1

lg a
ax.

2.5. Let us add two more obvious formulas:∫
dx

1 + x2
= arctanx and

∫
dx√

1− x2
= arcsinx.

——————

In the following two sections we will learn two useful methods for finding
primitive functions in more involved cases.

3. Integration per partes.

3.1. Let f, g have derivatives. From the rule of differentiating products
we immediately obtain ∫

f ′ · g = f · g −
∫
f · g′. (∗)

At the first sight we have not achieved much: we wish to integrate the product
f ′ · g and we are left with integrating a similar one, f · g′. But

(1)
∫
f · g′ can be much simpler than

∫
f ′ · g, or

(2) the formula can result in an equation from which the desired integral
can be easily computed, or

(3) the formula may yield a recursive one that leads to our goal.

Using the formula (∗) is called integration per partes.

3.2. Example: Illustration of 3.1.(1). Let us compute

J =

∫
xa lg x with x > 0 and a 6= −1.
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If we set f(x) = 1
a+1

xa+1 and g(x) = lg x we obtain f ′(x) = xa and g′(x) = 1
x

so that

J =
1

a+ 1
xa+1 lg x− 1

a+ 1

∫
xa+1 · 1

x
=

1

a+ 1
(xa+1 lg x−

∫
xa) =

=
1

a+ 1
(aa+1 lg x− 1

a+ 1
xa+1) =

xa+1

a+ 1
(lg x− 1

a+ 1
)

and hence for instance for a = 1 we obtain∫
lg xdx = x(lg x− 1).

3.3. Example: Illustration of 3.1.(2). Let us compute

J =

∫
ex sinxdx.

Setting f(x)− f ′(x) = ex and g(x) = sinx we obtain

J = ex sinx−
∫
ex cosxdx.

Now the new integral on the left hand side is about as complex as the one
we have started with. But let us repeat the procedure, this time with g(x) =
cosx. We obtain ∫

ex cosxdx = ex cosx−
∫
ex(− sinx)dx

and hence

J = ex sinx− (ex cosx−
∫
ex(− sinx)dx) = ex sinx− ex cosx− J

and conclude that

J =
ex

2
(sinx− cosx).

3.4. Example: Illustration of 3.1.(3). Let us compute

Jn =

∫
xnexdx for integers n ≥ 0.
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Setting f(x) = xn and g(x) = g′(x) = ex we obtain

Jn = xnex −
∫
nxn−1ex = xnex − nJn−1.

Iterating the procedure we get

Jn = xnex − nxn−1ex + n(n− 1)Jn−2 = · · · =
= xnex − nxn−1 + n(n− 1)xn−2ex + · · · ± n!J0

and since J0 =
∫
ex = ex this makes

Jn = ex ·
n∑
k=0

n!

(n− k)!
(−1)k · xn−k.

4. Substitution method.

4.1. The rule of differentiating composed function VI.2.2 can be for our
purposes reinterpreted as follows.

Fact. Let
∫
f = F , let a function φ have derivative φ′, and let the

composition F ◦ φ make sense. Then∫
f(φ(x)) · φ′(x)dx = F (φ(x)).

4.1.1. Thus, to obtain
∫
f(φ(x)) · φ′(x)dx we compute

∫
f(y)dy and in

the result substitute φ(x) for all the occurences of y. Using this trick is called
the substitution method.

Here the notation ∫
f(x)dx

instead of the plain
∫
f is of a great help. Recall the notation

dφ(x)

dx
for the derivative φ′(x).
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Now the expression dφ(x)
dx

is not really a fraction with numerator dφ(x) and
denominator dx, but let us pretend for a moment it is. Thus,

dφ(x) = φ′(x)dx or “ dy = φ′(x)dx where φ(x) is substituted for y ”.

Hence, using the substitution method (substituting φ(x) for y) consists of
computing ∫

f(y)dy

as an integral in variable y, and when substituting φ(x) for y writing

dy = φ′(x)dx as obtained from
dy

dx
= φ′(x).

This is very easy to remember.

4.2. Example. To determine
∫

lg x
x

dx substitute y = lg x. Then dy = dx
x

and we obtain ∫
lg x

x
dx =

∫
ydy =

1

2
y2 =

1

2
(lg x)2.

4.3. Example. To compute
∫

tanxdx recall that tanx = sinx
cosx

and that
(− cosx)′ = sinx. Hence, substituting y = − cosx we obtain∫

tanxdx =

∫
sinx

cosx
dx =

∫
dy

−y
= − lg |y| = − lg | cosx|.

We will meet many more examples in the following two sections.

5. Integrals of rational functions.

5.1. In view of 2.1 and IX.4.3.2 it suffices to find the integrals∫
1

(x− a)k
dx (5.1.1)

and ∫
Ax+B

(x2 + ax+ b)k
dx with x2 + ax+ b irreducible (5.1.2)
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for natural numbers k.

5.2. The first, (5.1.1) is very easy. If we substitute y = x−a then dy = dx
and we compute our integral as

∫
1
yk

and by 2.2 and 2.2.1 (substituting back

x− a for y) ∫
1

(x− a)k
dx =

{
1

1−k ·
1

(x−a)k−1 for k 6= 1,

lg |x− a| for k = 1.

5.3. Lemma. Set

J(a, b, x, k) =

∫
1

(x2 + ax+ b)k
dx.

Then we have∫
Ax+B

(x2 + ax+ b)k
dx =

{
A

2(1−k) ·
1

(x2+ax+b)k−1 + (B − Aa
2

)J(a, b, x, k) for k 6= 1,
A
2

lg |x2 + ax+ b|+ (B − Aa
2

)J(a, b, x, k) for k = 1.

Proof. We have

Ax+B

x2 + ax+ b
=
A

2

2x+ a

x2 + ax+ b
+ (B − Aa

2
)

1

x2 + ax+ b

Now in the first we can compute∫
2x+ a

x2 + ax+ b
dx

substituting y = x2 + ax+ b; then we have dy = (2x+ a)dx and the task, as
in 5.2, reduces to determining

∫
1
yk

dy. �

5.4. Hence, (5.1.2) will be solved by computing∫
1

(x2 + ax+ b)k
dx

with irreducible x2 + ax+ b.
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5.4.1. First observe that because of the irreducibility we have b− a2

4
> 0

(otherwise, x2 + ax + b would have real roots). Therefore we have a real c
with

c2 = b− a2

4
and

x2 + ax+ b = c2

((
x+ 1

2
a

c

)2

+ 1

)
.

Thus, if we substitute y =
x+ 1

2
a

c
(hence, dy = 1

c
dx) in

∫
1

(x2+ax+b)k
dx we

obtain
1

c2k−1

∫
1

(y2 + 1)k
dy

and we have further reduced our task to finding
∫

1
(x2+1)k

dx.

5.4.2. Proposition. The integral

Jk =

∫
1

(x2 + 1)k
dx

can be computed recursively from the formula

Jk+1 =
1

2k
· x

x2 + 1
+

2k − 1

2k
Jk (∗)

with J1 = arctgx.
Proof. First set

f(x) =
1

(x2 + 1)k
and g(x) = x.

Then

f ′(x) = −k 2x

(x2 + 1)k+1
and g′(x) = 1

and from the per partes formula we obtain

Jk =
x

(x2 + 1)k
+ 2k

∫
xk

(x2 + 1)k+1
=

=
x

(x2 + 1)k
+2k

(∫
xk + 1

(x2 + 1)k+1
−
∫

1

(x2 + 1)k+1

)
=

=
x

(x2 + 1)k
+ 2kJk − 2kJk+1
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and the formula (∗) follows; the J1 = arctanx was already mentioned in 2.5
�

6. A few standard substitutions.

6.1. First let us extend the terminology from Chapter IX. An expression∑
r,s≤n

arsx
rys

will be called a polynomial in two variables x, y. If p(x, y), q(x, y) are poly-
nomials in two variables we speak of

R(x, y) =
p(x, y)

q(x, y)

as of rational function in two variables.

6.1.1. Convention. In the rest of this section, R(x, y) will always be a
rational function in two variables.

6.1.2. Observation. Let P (x), Q(x) be rational function as in Chapter
IX. Then S(x) = R(P (x), Q(x)) is a rational function.

6.2. The integral
∫
R
(
x,
√

ax+b
cx+d

)
dx. Substitute y =

√
ax+b
cx+d

. Then

y2 = ax+b
cx+d

from which we obtain

x =
b− dy2

ay2 + a

and hence
dx

dy
= S(y)

where S(y) is a rational function (the explicit formula can be easily obtained).
Hence, the substitution transforms∫

R

(
x,

√
ax+ b

cx+ d

)
dx to

∫
R

(
b− dy2

ay2 + a
, y

)
S(y)dy

and this we can compute using the procedures from the previous section.
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6.3. Euler substitution: the integral
∫
R(x,

√
ax2 + bx+ c)dx. First

let us dismiss the case of a ≤ 0. Since we assume that the function makes
sense, we have to have ax2 + bx+ c ≥ 0 on its domain which implies (in case
of a ≤ 0) real roots α, β and

R(x,
√
ax2 + bx+ c) = R(x,

√
−a
√

(x− α)(x− β)) =

= R
(
x,
√
−a(x− α)

√
x− β
x− α

)
and this is a case already dealt with in 5.2.

But if a > 0 the situation is new. Then let us substitute the t from the
equation √

ax2 + bx+ c =
√
ax+ t

(this is the Euler substitution). The squares of both sides yield

ax2 + bx+ c = ax2 + 2
√
axt+ t2

and we obtain

x =
t2 − c

b− 2t
√
a

and hence
dx

dt
= S(t)

where S(t) is a rational function. Thus we can compute our integral as∫
R

(
t2 − c

b− 2t
√
a
,
√
a

t2 − c
b− 2t

√
a

+ t

)
S(t)dt.

6.4. Goniometric functions in a rational one:
∫
R(sinx, cosx)dx.

To compute ∫
R(sinx, cosx)dx

we will be helped by the substitution

y = tan
x

2
.

Recall the standard formula

cos2 x =
1

1 + tan2 x
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from which we obtain

sinx = 2 sin
x

2
cos

x

2
= 2 tan

x

2
cos2

x

2
=

2 tan x
2

1 + tan x
2
2 =

2y

1 + y2
,

cosx = cos2
x

2
− sin2 x

2
= 2 cos2

x

2
− 1 =

2

1 + y2
− 1 =

1− y2

1 + y2
.

Further we have

dy

dx
=

1

2
· 1

cos2 x
2

=
1

2
· (1 + tan2 x

2
) =

1

2
(1 + y2)

and hence

dx− 2

1 + y2
dy

so that we can solve our task by computing∫
R

(
2y

1 + y2
,
1− y2

1 + y2

)
2

1 + y2
dy.

6.5. Note. The procedures in Section 4 and Section 5 are admittedly
very laborious and time consuming. This is because they should cover fairly
general cases. In a concrete case we sometimes can find a combination of the
per partes and substitution methods leading to our goal in a much shorter
procedure. Compare for instance

∫
tanxdx as computed in 4.3 with 5.4.
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XI. Riemann integral

1. The area of a planar figure.

1.1. Let us denote by vol(M) the area of a planar figure M ⊆ R2. A
figure may be too exotic to be assigned an area, but we will not work with
such here. Using the symbol vol includes the claim that the area in question
makes sense.

The reader may wonder why we use the abreviation vol and not something
like “ar”. This is because later we will work in higher dimensions and referring
to M ⊆ Rn with general n, “volume” is used rather than “area”.

1.2. The following are rules we can certainly easily agree upon.

(1) vol(M) ≥ 0 whenever it makes sense,

(2) if M ⊆ N then vol(M) ≤ vol(N),

(3) if M and N are disjoint then vol(M ∪N) = vol(M) + vol(N), and

(4) if M is a rectangle with sides a, b then vol(M) = a · b.

1.3. Observation. 1. vol(∅) = 0.
2. Let M be a segment. Then vol(M) = 0.
Proof. 1: ∅ is a subset of any rectangle, hence the statement follows from

(1),(2) and (4)
2 follows similarly: a segment of length a is a subset of a rectangle with

sides a, b with arbitrarily small positive b. �

1.3.1. Note. Thus we see that it was not necessary to specify whether
we included in 1.2(4) the border segments, or just parts of them.

1.4. Proposition. If the areas make sense we have

vol(M ∪N) = vol(M) + vol(N)− vol(M ∩N).

In particular we have

vol(M ∪N) = vol(M) + vol(N) whenever vol(M ∩N) = 0.
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Proof. Follows from 1.2(4) taking into account the disjoint unions

M ∪N = M ∪ (N rM) and N = (N rM) ∪ (N ∩M).

�

1.5. In the sequel the areas of figures of the following type

(x1, y1) .

(x3, y3) .

(x0, y0) .

(x2, y2) .

(x0, 0) (x1, 0) (x2, 0) (x3, 0) (x4, 0)

will play a fundamental role. By the previous trivial statements, their areas
are simply the sums of the areas of the rectangles involved. In particular,
the area of the figure in the picture is

y0(x1 − x0) + y1(x2 − x1) + y2(x3 − x2) + y3(x4 − x3).

2. Definition of the Riemann integral.

2.1. Convention. In this chapter we will be interested in bounded
real functions f : J → R defined on compact intervals J , that is, functions
such that there are constants m,M such that for all x ∈ J , m ≤ f(x) ≤M .
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Recall that (because of the compactness) a continuous function on J is always
bounded. But our functions will not be always necessarily continuous.

2.2. A partition of a compact interval 〈a, b〉 is a sequence

P : a = t0 < t1 < · · · < tn−1 < tn = b.

Another partition

P ′ : a = t′0 < t′1 < · · · < t′n−1 < tm = b

is said to refine P (or to be a refinement of P ) if the set {tj | j = 1, . . . , n−1}
is contained in {t′j | j = 1, . . . ,m− 1}.

The mesh of P , denoted µ(P ), is defined as the maximum of the differ-
ences tj − tj−1.

2.3. For a bounded function f : J = 〈a, b〉 → R and a partition P : a =
t0 < t1 < · · · < tn−1 < tn = b define the lower resp. upper sum of f in P by
setting

s(f, P ) =
n∑
j=1

mj(tj − tj−1) resp. S(f, P ) =
n∑
j=1

Mj(tj − tj−1)

where mj = inf{f(x) | tj−1 ≤ x ≤ tj} and Mj = sup{f(x) | tj−1 ≤ x ≤ tj}.
2.3.1. Proposition. Let P ′ refine P . Then

s(f, P ) ≤ s(f, P ′) and S(f, P ) ≥ S(f, P ′)

Proof will be done for the upper sum. Let tk−1 = t′l < t′l+1 < · · · < t′l+r =
tk. For M ′

l+j = sup{f(x) | t′l+j−1 ≤ x ≤ t′l+j} and Mk = sup{f(x) | tk−1 ≤
x ≤ tk} we have

∑
jM

′
j(t
′
l+j− t′l+j−1) ≤

∑
jMk(t

′
l+j− t′l+j−1) = Mk(tk− tk−1)

and the statement follows. �

2.3.2. Proposition. For any two partitions P1, P2 we have

s(f, P1) ≤ S(f, P2).

Proof. Obviously, s(f, P ) ≤ S(f, P ) for any partition. Further, for any
two partitions P1, P2 there is a common refinement P : it suffices to take the
union of the dividing points of the two partitions. Thus, by 2.3.1,

s(f, P1) ≤ s(f, P ) ≤ S(f, P ) ≤ S(f, P2).
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2.4. By 2.3.2 we have the set of real numbers {s(f, P ) |P a partition}
bounded from above and {S(f, P ) |P a partition} bounded from below. Hence
there are finite∫ b

a

f(x)dx = sup{s(f, P ) |P a partition} and

∫ b

a

f(x)dx = inf{S(f, P ) |P a partition}.

The first is called the lower Riemann integral of f over 〈a, b〉, the second is
the upper Riemann integral of f .

From 2.3.2 again we see that∫ b

a

f(x)dx ≤
∫ b

a

f(x)dx;

If
∫ b
a
f(x)dx =

∫ b
a
f(x)dx then the common value is denoted by∫ b

a

f(x)dx

and called the Riemann integral of f over 〈a, b〉.
2.4.1. Observation. Set m = inf{f(x) | a ≤ x ≤ b} and M =

sup{f(x) | a ≤ x ≤ b}. We have

m(b− a) ≤
∫ b

a

f(x)dx ≤
∫ b

a

f(x)dx ≤M(b− a).

2.4.2. Proposition. The Riemann integral
∫ b
a
f(x)dx exists if and only

if for every ε > 0 there is a partition P such that

S(f, P )− s(f, P ) < ε.

Proof. I. Let
∫ b
a
f(x)dx exist and let ε > 0. Then there are partitions P1

and P2 such that

S(f, P1) <

∫ b

a

f(x)dx+
ε

2
and s(f, P2) >

∫ b

a

f(x)dx+
ε

2
.

108



Then we have, by 2.3.1, for the common refinement P of P1, P2,

S(f, P )− s(f, P ) <

∫ b

a

f(x)dx+
ε

2
−
∫ b

a

f(x)dx+
ε

2
= ε.

II. Let the statement hold. Choose an ε > 0 such that S(f, P )−s(f, P ) <
ε. Then ∫ b

a

f(x)dx ≤ S(f, P ) < s(f, P ) + ε ≤
∫ b

a

f(x)dx+ ε,

and since ε was arbitrary we conclude that
∫ b
a
f(x)dx =

∫ b
a
f(x)dx. �

2.5. Notes. 1. We will see best what is happening if we analyse the case
of a non-negative function f . Consider F = {(x, y) |x ∈ 〈a, b〉, 0 ≤ f(x)}.
that is, the figure bordered by the x-axis, the graph of f and the vertical lines
passing through (a, 0) and (b, 0). Take the largest union Fl(P ) of rectangles
with the lower horizontal sides 〈tj−1, tj〉 (recall the picture in 1.5) that is
contained in F ; obviously vol(Fl(P )) = s(f, P ). The similar smallest union
of rectangles Fu(P ) that contains F has vol(Fu(P )) = S(f, P ). Thus, if the
area of F makes sense we have to have

s(f, P ) = vol(Fl(P )) ≤ vol(F ) ≤ vol(Fu(P )) = S(f, P ),

and if
∫ b
a
f(x)dx exists then this number is the only candidate for vol(F ) and

it is only natural to take it for the definition of the area.

2. The notation
∫ b
a
f(x)dx comes from not quite correct but useful intu-

ition. Think of dx as of a very small interval (one would like to say “infinitely
small, but with non-zero length”, which is not quite such a nonsense as it
sounds); anyway, the dx are disjoint and cover the segment 〈a, b〉, and

∫
stands for “sum” of the areas of the “very thin rectangles” with the hori-
zontal side dx and height f(x). Note how close this intuition is to the more
correct view from 1 if we take P with a very small mesh.

2.6. Notation. If there is no danger of confusion we abbreviate (in
analogy with the notation in Chapter X) the expressions∫ b

a

f(x)dx,

∫ b

a

f(x)dx.

∫ b

a

f(x)dx to

∫ b

a

f,

∫ b

a

f.

∫ b

a

f.
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3. Continuous functions.

3.1. Uniformm continuity. A real function f : D → R is said to be
uniformly continuous if

∀ε > 0 ∃δ > 0 such that ∀x, y ∈ D, |x− y| < δ ⇒ |f(x)− f(y)| < ε.

3.1.1. Remark. Note the subtle difference between continuity and
uniform continuity. In the former the δ depends not only on the ε but also
on the x, while in the latter it does not. A uniformly continuous function is
obviously continuous, but the reverse implication does not hold even in very
simple cases. Take for instance

f(x) = (x 7→ x2) : R→ R.

We have |x2 − y2| = |x − y| · |x + y|; thus, if we wish to have |x2 − y2| < ε
in the neighbourhood of x = 1 it suffices to take δ close to ε itself, in the
neighbourhood of x = 100 one needs something like δ = ε

100
.

3.1.2. Perhaps somewhat surprisingly, for a compact domain these con-
cepts coincide. We have

Theorem. A function f : 〈a, b〉 → R is continuous if and only if it is
uniformly continuous.

Proof. Let f not be uniformly continuous. We will prove it is not contin-
uous either.

Since the formula for uniform continuity does not hold we have an ε0 > 0
such that for every δ > 0 there are x(δ), y(δ) such that |x(δ) − y(δ)| < δ
while |f(x(δ))− f(y(δ))| ≥ ε0. Set xn = x( 1

n
) and yn = y( 1

n
). By IV.1.3.1 we

can choose convergent subsequences (x̃n)n, (ỹn)n (first choose a convergent
subsequence (xkn)n of (xn)n then a convergent subsequence (ykln )n of (ynk)k
and finally set x̃n = xkln and ỹn = ykln ). Then |x̃n − ỹn| < 1

n
and hence

lim x̃n = lim ỹn Because of |f(x̃n) − f(ỹn)| ≥ ε0, however, we cannot have
lim f(x̃n) = lim f(ỹn) so that by IV.5.1 f is not continuous. �

3.2. Theorem. For every continuous function f : 〈a, b〉 → R the Rie-

mann integral
∫ b
a
f exists.

Proof. Since f is by 3.1.2 uniformly continuous we can choose for ε > 0
a δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε

b− a
.
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Recall the mesh µ(P ) = maxj(tj−tj−1) of P : t0 < t1 < · · · < tk. If µ(P ) < δ
we have tj − tj−1 < δ for all j, and hence

Mj −mj = sup{f(x) | tj−1 ≤ x ≤ tj} − inf{f(x) | tj−1 ≤ x ≤ tj} ≤

≤ sup{|f(x)− f(y)| | tj−1 ≤ x, y ≤ tj} ≤
ε

b− a

so that

S(f, P )− s(f, P ) =
∑

(Mj −mj)(tj − tj−1) ≤

≤ ε

b− a
∑

(tj − tj−1) =
ε

b− a
(b− a) = ε.

Now use 2.4.2 �

3.2.1. Scrutinizing the proof above we obtain a somewhat stronger

Theorem. Let f : 〈a, b〉 → R be a continuous function and let P1, P2, . . .
be a sequence of partitions such that limn µ(Pn) = 0. Then

lim
n
s(f, Pn) = lim

n
S(f, Pn) =

∫ b

a

f.

(Indeed, with ε and δ as above choose an n0 such that for n ≥ n0 we have
µ(Pn) < δ.)

3.3. Theorem. (The Integral Mean Value Theorem) Let f : 〈a, b〉 → R
be continuous. Then there exists a c ∈ 〈a, b〉 such that∫ b

a

f(x)dx = f(c)(b− a).

Proof. Set m = min{f(x) | a ≤ x ≤ b} and M = max{f(x) | a ≤ x ≤ b}
(recall IV.5.2). Then

m(b− a) ≤
∫ b

a

f(x)dx ≤M(b− a).

Hence there is a K with m ≤ K ≤ M such that
∫ b
a
f(x)dx = K(b − a). By

IV.3.2 there exists a c ∈ 〈a.b〉 such that K = f(c). �
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4. Fundamental Theorem of Calculus.

4.1. Proposition. Let a < b < c and let f be bounded on 〈a, c〉. Then∫ b

a

f +

∫ c

b

f =

∫ c

a

f and

∫ b

a

f +

∫ c

b

f =

∫ c

a

f.

Proof for the lower integral. Denote by P(u, v) the set of all partitions
of 〈u, v〉. For P1 ∈ P(a, b) and P2 ∈ P(b, c) define P1 + P2 ∈ P(a, c) as the
union of the two sequences. Then obviously

s(f, P1 + P2) = s(f, P1) + s(f, P2)

and hence∫ b

a

f +

∫ c

b

f = sup
P1∈P(a,b)

s(f, P1) + sup
P2∈P(b,c)

s(f, P2) =

= sup{s(f, P1) + s(f, P2) |P1 ∈ P(a, b), P2 ∈ P(b, c)} =

= sup{s(f, P1 + P2) |P1 ∈ P(a, b), P2 ∈ P(b, c)}.

Now every P ∈ P(a, c) can be refined to a P1 + P2: it suffices to add b into
the sequence. Thus, by 2.3.1 this last supremum is equal to

sup{s(f, P ) |P ∈ P(a, c)} =

∫ c

a

f.

�

4.2. Convention. For a = b we set
∫ a
a
f = 0 and for a > b we set∫ b

a
f =

∫ a
b
f . Then by straightforward checking we obtain

4.2.1. Observation. For any a, b, c,∫ b

a

f +

∫ c

b

f =

∫ c

a

f.

4.3. Theorem. (Fundamental Theorem of Calculus) Let f : 〈a, b〉 → R
be continuous. For x ∈ 〈a, b〉 set

F (x) =

∫ x

a

f(t)dt.
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Then F ′(x) = f(x) (to be precise, the derivative in a is from the right and
the one in b is from the left).

Proof. By 4.2.1 and 3.3 we have for h 6= 0

1

h
(F (x+h)−f(x)) =

1

h
(

∫ x+h

a

f−
∫ x

a

f) =
1

h

∫ x+h

x

f =
1

h
f(x+θh)h = f(x+θh)

where 0 < θ < 1 and as f is continuous, limh→0
1
h
(F (x + h) − f(x)) =

limh→0 f(x+ θh) = f(x). �

4.3.1. Corollary. Let f : 〈a, b〉 → R be continuous. Then it has
a primitive function on (a, b) continuous on 〈a, b〉. If G is any primitive
function of f on (a, b) continuous on 〈a, b〉 then∫ b

a

f(t)dt = G(b)−G(a).

.
(By 4.3 we have

∫ b
a
f(t)dt = F (b)− F (a). Recall IX.1.2.)

4.3.2. Remark. Note the contrast between derivatives and primitive
functions. Having a derivative is a very strong property of a continuous
function, but differentiating of elementary functions – that is, the functions
we typically encounter – is very easy. On the other hand, each continuous
function has a primitive one, but it is hard to compute.

4.4. Recall the Integral Mean Value Theorem (3.3). The fundamental
theorem of calculus puts it in a close connection with the Mean Value Theo-
rem of differential calculus. Indeed if we denote by F the primitive function
of f , the formula in 3.3 reads

F (b)− F (a) = F ′(c)(b− a).

5. A few simple facts.

5.1. Proposition. Let g and f differ in finitely many points. Then∫ b

a

f =

∫ b

a

g and

∫ b

a

f =

∫ b

a

g.
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In particular, if
∫ b
a
f exists then also

∫ b
a
g exists and

∫ b
a
f =

∫ b
a
g.

Proof for the lower integral. Recall the mesh µ(P ) from 2.2. If |f(x)| and
|g(x)| are ≤ A for all x and if f and g differ in n points then

|s(f, P )− s(g, P )| ≤ n · A · µ(P ),

and µ(P ) can be arbitrarily small. �

5.2. Proposition. Let f have only finitely many points of discontinuity
in 〈a, b〉, all of them of the first kind. Then the Riemann integral

∫ b
a
f exists.

Proof. Let the discontinuity points be c1 < c2 < · · · < cn. Then we have∫ b

a

f =

∫ c1

a

f +

∫ c2

c1

f + · · ·+
∫ b

cn

f.

�

5.3. Proposition. Let
∫ b
a
f and

∫ b
a
g exist and let α, β be real numbers.

Then
∫ b
a
(αf + βg) exists and we have∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g.

Proof. I. First we easily see that
∫ b
a
αf = α

∫ b
a
f . Indeed, for α ≥ 0 we

obviously have s(αf, P ) = αs(f, P ) and S(αf, P ) = αS(f, P ), and for α ≤ 0
we have s(αf, P ) = αS(f, P ) and S(αf, P ) = αs(f, P ).

II. Thus, it suffices to prove the statement for the sum f + g. Set mi =
inf{f(x) + g(x) |x ∈ 〈ti−1, ti〉}, m′i = inf{f(x) |x ∈ 〈ti−1, ti〉} and m′′i =
inf{g(x) |x ∈ 〈ti−1, ti〉}. Obviously m′1 +m′′i ≤ mi and consequently

s(f, P )+s(g, P ) ≤ s(f+g, P ), and similarly S(f+g, P ) ≤ S(f, P )+S(g, P )

and we easily conclude that∫ b

a

f +

∫ b

a

g ≤
∫ b

a

(f + g) and

∫ b

a

(f + g) ≤
∫ b

a

f +

∫ b

a

g

and hence ∫ b

a

f +

∫ b

a

g ≤
∫ b

a

(f + g) ≤
∫ b

a

≤
∫ b

a

f +

∫ b

a

g.
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5.4. Per partes. Set

[h]ba = h(b)− h(a).

Then we trivially obtain from 4.3 and X.3.1∫ b

a

f · g′ = [f · g]ba −
∫ b

a

f ′ · g.

5.5. Theorem. (Substitution theorem for Riemann integral) Let f :
〈a, b〉 → R be continuous and let φ : 〈a, b〉 → R be a one-to-one map with
derivative. Then ∫ b

a

f(φ(x))φ′(x)dx =

∫ φ(b)

φ(a)

f(x)dx.

Proof. Recall 4.4 including the definition of F . We immediately have∫ φ(b)

φ(a)

f(x)dx = F (φ(b))− F (φ(a)).

But from X.4.1 and 4.4 we also have

F (φ(b))− F (φ(a)) =

∫ b

a

f(φ(x))φ′(x)dx,

and the statement follows.

5.5.1. There is a strong geometric intuition behind this substitution
formula.

Recall 2.5 and 2.6. Think of φ as of a deformation of the interval 〈a, b〉
to obtain 〈φ(a), φ(b)〉. The derivative φ′(x) is a measure of how a very small
interval around x is stretched resp. compressed. Thus, if we compute the

integral
∫ φ(b)
φ(a)

f as an integral over the original 〈a, b〉 we have to adjust the

“small element” of length dx by the stretch or compression and obtain a
corrected “small element” of length φ′(x)dx.
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XII. A few applications of Riemann integral.

In this short chapter we will present a few applications of Riemann inte-
gral. Some of them wil concern computing volumes and similar, but there
will be also two theoretical ones.

1. The area of a planar figure again.

1.1. We motivated the definition of Riemann integral by the idea of the
area of the planar figure

F = {(x, y) |x ∈ 〈a, b〉, 0 ≤ y ≤ f(x)}

where f was a non-negative continuous function. Given a partition P : a =
t0 < t1 · · · < tn = b of 〈a, b〉 this F was minorized by the union of rectangles

n⋃
j=1

〈tj−1, tj〉 × 〈0,mj〉 with mj = inf{f(x) | tj−1 ≤ x ≤ tj},

with the area

s(f,D) =
n∑
j=1

mj(tj − tj−1),

and majorized by the union of rectangles

n⋃
j=1

〈tj−1, tj〉 × 〈0,Mj〉 with Mj = sup{f(x) | tj−1 ≤ x ≤ tj},

with the area

S(f,D) =
n∑
j=1

Mj(tj − tj−1).

Thus (recall XI.2.5), the only candidate for the area of F is

vol(F ) =

∫ b

a

f(x)dx,

the common value of the supremum of the former and the infimum of the
latter.
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1.2. Thus for instance the area of the section of parabola

F = {(x, y) | − 1 ≤ x ≤ 1, 0 ≤ y ≤ 1− x2}

is ∫ 1

−1
(1− x2)dx = [x− 1

3
x3]1−1 = 1− 1

3
+ 1− 1

3
=

4

3
.

1.3. Let us compute the area of the circle with radius r. A half of it is
given by

J =

∫ r

−r

√
r2 − x2dx.

Substitute x = r sin y. Then dx = r cos ydy and
√
r2 − x2 = r cos y so that

we have J transformed to

J = r2
∫ π

2

−π
2

cos2 y dy.

Now cos2 y = 1
2
(cos 2y + 1), and we proceed

J

r2
=

1

2

∫ π
2

−π
2

cos 2y dy +
1

2

∫ π
2

−π
2

dy =
1

2

([
1

2
sin 2y

]π
2

−π
2

+ [y]
π
2

−π
2

)
=

1

2
(0 + π)

and hence the area in question is 2J = πr2.

2. Volume of a rotating body.

2.1. Consider again a non-negative continuous function f and the curve

C = {(x, f(x), 0) | a ≤ x ≤ b}

in the three-dimensional Euclidean space. Now rotate C around the x-axis
{x, 0, 0) |x ∈ R} and consider the set F surrounded by the result.

It is easy to compute the volume of F . Instead of the union of rectangles⋃n
j=1〈tj−1, tj〉×〈0,mj〉 as in 1.1, we will now minorize the set F by the union

of discs (cylinders)

n⋃
j=1

〈tj−1, tj〉 × {(y, z) | y2 + z2 ≤ m2
i } with mj = inf{f(x) | tj−1 ≤ x ≤ tj}
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with the volume
n∑
j=1

πm2
j(tj − tj−1)

and similarly we obtain the upper estimate of the volume by

n∑
j=1

πM2
j (tj − tj−1) with Mj = sup{f(x) | tj−1 ≤ x ≤ tj}.

Thus, we compute the volume of F as

vol(F ) = π

∫ b

a

f 2(x)dx.

2.2. For istance we obtain the three-dimensional ball B3 as bounded by
the rotating curve {(x,

√
r2 − x2) | − r ≤ x ≤ r} and hence obtain

vol(B3) = π

∫ r

−r
(r2 − x2)dx = π

[
r2x− 1

3
x3
]r
−r

= 2π

(
r3 − 1

3
r3
)

=
4

3
πr3.

3. Length of a planar curve
and surface of a rotating body.

3.1. Let f be a continuous function on 〈a, b〉 (later, we will assume it to
have a derivative) and the curve

C = {(x, f(x)) | a ≤ x ≤ b}.

Take a partition

P : a = t0 < t1 < · · · < tn−1 < tn = b

of the interval 〈a, b〉, and approximate C by the system of segments S(P )
connecting

(tj−1, f(tj−1)) with (tj, f(tj)).

The length L(P ) of this approximation, the overall sum of the lengths of
these segments, is

L(P ) =
n∑
j=1

√
(tj − tj−1)2 + (f(tj)− f(tj−1))2.
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Now suppose f has a derivative. Then we can use the Mean Value Theorem
(VII.2.2) to obtain

L(P ) =
n∑
j=1

√
(tj − tj−1)2 + f ′(θi)2(tj)− tj−1)2 =

n∑
j=1

√
1 + f ′(θi)2(tj−tj−1).

Obviously if P1 refines P we have from the triangle inequality

L(P1) ≥ L(P )

so that
L(C) = sup{L(P ) |P partition of 〈a, b〉}

can be naturally viewed as the length of the curve C. By XI 3.2.1 the sums
converge to

L(C) =

∫ b

a

√
1 + f ′(x)2dx.

3.2. Similarly, approximating the surface of a rotating body by the re-
levant parts of truncated cones with heights (tj − tj−1) and radii f(ti) and
f(tj−1) of the bases, we obtain the formula

2π

∫ b

a

f(x)
√

1 + f ′(x)2dx.

4. Logarithm.

4.1. In V.1.1 we introduced logarithm axiomatically as a function L that

(1) increases in 〈0,+∞),

(2) satisfies L(xy) = L(x) + L(y),

(3) and such that limx→0
L(x)
x−1 = 1.

The existence of such a function (which we had to believe in in V.1.1) will
be now proved by a simple construction.
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4.2. Set

L(x) =

∫ x

1

1

t
dt

If x > 0 this is correct: the function 1
t

is well defined and continuous on the
closed interval between 1 and x.

4.2.1. If x < y then L(y) − L(x) =
∫ y
x

1
t
dt is an integral of a positive

function over 〈x, y〉 and hence a positive number. Hence L(x) increases.

4.2.2. We have

L(xy) =

∫ xy

1

1

t
dt =

∫ x

1

1

t
dt+

∫ xy

x

1

t
dt. (∗)

In the last summand substitute z = φ(t) = xt to obtain∫ xy

x

1

z
dz =

∫ y

1

1

xt
φ′(t)dt =

∫ y

1

x

xt
dt =

∫ y

1

1

t
dt

so that (∗) yields

L(x, y) =

∫ x

1

1

t
dt+

∫ y

1

1

t
dt = L(x) + L(y).

4.2.3. Finally we have

lim
x→0

L(x)

x− 1
= lim

x→0

L(x)− L(1)

x− 1
= L′(1) =

1

1
= 1

by XI.4.3.

5. Integral criterion of convergence of a series.

5.1. Consider a series
∑
an with a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0. Let f be a

non-increasing continuous function defined on the interval 〈1,+∞) such that

an = f(n).

5.2. Theorem. (Integral Criterion of Convergence) The series
∑
an

converges if and only if the limit

lim
n→∞

∫ n

1

f(x)dx
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is finite.
Proof. The trivial estimate of Riemann integral yields

an+1 = f(n+ 1) ≤
∫ n+1

n

f(x)dx ≤ f(n) = an.

Thus,

a2 + a3 + · · ·+ an ≤
∫ n

1

f(x)dx ≤ a1 + a2 + · · ·+ an−1.

Hence, if L = limn→∞
∫ n
1
f(x)dx is finite then

n∑
1

ak ≤ a1 + L

and the series converges. On the other hand, if the sequence (
∫ n
1
f(x)dx)n is

not bounded then also (
∑n

1 an)n is not bounded. �

5.3. Remark. Note that unlike the criteria in III.2.5, the Integral
Criterion is a necessary and sufficient condition. Hence, of course, it is much
finer. This will be illustrated by the following example.

5.4. Proposition. Let α > 1 be a real number. Then the series

1

1α
+

1

2α
+

1

3α
+ · · ·+ 1

nα
+ · · · (∗)

converges.
Proof. We have∫ n

1

x−αdx =

[
1

1− α
· x1−α

]
=

1

1− α

(
1

nα−1
− 1

)
≤ 1

α− 1
.

�

Note that the convergence of the series (∗) does not follow from the criteria
III.2.5 even for big α.
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XIII. Metric spaces: basics

1. An example.

1.1. In the following chapters we will study real functions of several real
variables. Hence, domains of such functions will be subsets of Euclidean
spaces. We will need to understand better the basic notions like convergence
or continuity: as we will see in the following example they cannot be reduced
to the behaviour of functions in the individual variables. In this chapter we
will discuss some concepts to be used in the general context of metric spaces.

1.2. Define a function of two real variables f : E2 → R by setting

f(x, y) =

{
xy

x2+y2
for (x, y) 6= (0, 0),

0 for (x, y) = (0, 0).

For any fixed y0 the function φ : R → R defined by φ(x) = f(x, y0) is
evidently a continuous one (if y0 6= 0 it is defined by an arithmetic expression,
and for y0 = 0 it is the constant 0) and similarly for any fixed x0 the formula
ψ(y) = f(x0) defines a continuous function ψ : R → R. But the function
f as a whole behaves wierdly: if we approach (0, 0) in the arguments (x, x)
with x 6= 0 the values of f are constantly 1

2
and at x = 0 we jump to 0, an

evident discontinuity in any reasonable intuitive meaning of the word.

2. Metric spaces, subspaces, continuity.

2.1. A metric (or distance function, or briefly distance) on a set X is a
function

d : X ×X → R

such that

(1) ∀x, y, d(x, y) ≥ 0 and d(x, y) = 0 iff x = y,

(2) ∀x, y, d(x, y) = d(y, x) and

(3) ∀x, y, z, d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).
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A metric space (X, d) is a set X endowed by a metric d.

Note. The assumptions (1) and (3) are rather intuitive: (1) requires that
the distance of two distinct points is not zero, (3) says that the shortest path
between x and z cannot be longer than the one subjected to the condition
that we visit a point y on the way. The symmetry condition (2) is somewhat
less satisfactory (consider the distances between two places in town one has
to cover by car), but for our purposes is is quite acceptable.

2.2. Examples. 1. The real line, that is, R with the distance d(x, y) =
|x− y|.

2. The Gauss plane, that is, the set of complex numbers C with the
distance d(x, y) = |x− y|. Note that the fact that this formula is a distance
in C is less trivial than the fact about the |x− y| in R (recall I.3.4).

3. The n-dimensional Euclidean space En: The set

{(x1, . . . , xn) |xi ∈ R}

with the metric

d((x1, . . . , xn), (y1, . . . , yn)) =

√√√√ n∑
i=1

(xi − yi)2. (∗)

4. Let J be an interval. Consider the set

F (J) = {f | f : J → R bounded}

endowed with the distance

d(f, g) = sup{|f(x)− g(x)| |x ∈ J}.

2.2.1. More about En. The Euclidean space En (and its subsets) will
play a fundamental role in the sequel. It deserves a few comments.

(a) The reader knows from linear algebra the n-dimensional vector space
Vn, the scalar product x ·y = (x1, . . . , xn) · (y1, . . . , yn) =

∑n
i=1 xiyi, the norm

‖x‖ =
√
x · x, and the Cauchy Schwarz inequality

|x · y| ≤ ‖x‖ · ‖y‖.
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From this inequality one easily infers that d(x, y) = ‖x− y‖ is a distance on
Vn (do it as a simple exercise). Now En is nothing else than (Vn, d) with the
structure of vector space neglected.

(b) The Gauss plane is the Euclidean plane E2. Only, similarly as Vn as
compared with En, it has more structure.

(c) The (Pythagorean) metric (∗) in En is in acordance with the standard
Euclidean geometry. It can be, however, somewhat inconvenient to work
with. More expedient distances (equivalent with (∗) for our purposes) will
be introduced in 4.3 below.

2.3. Continuous and uniformly continuous maps. Let (X1, d1) and
(X2, d2) be metric spaces. A mapping f : X1 → X2 is said to be continuous
if

∀x ∈ X1 ∀ε > 0 ∃δ > 0 such that ∀y ∈ X1, d1(x, y) < δ ⇒ d2(f(x), f(y)).

It is said to be uniformly continuous if

∀ε > 0 ∃δ > 0 such that ∀x ∈ X1 ∀y ∈ X1, d1(x, y) < δ ⇒ d2(f(x), f(y)).

Note that obviously each uniformly continuous mapping is continuous.

2.3.1. Observations. (1) The identity mapping id : (X, d) → (X.d) is
continuous.

(2) The composition g ◦ f : (X1, d1)→ (x3, d3) of (uniformly) continuous
maps f : (X1, d1) → (x2, d2) and g : (X2, d2) → (x3, d3) is (uniformly)
continuous.

2.4. Subspaces. Let (X, d) be a metric space and let Y ⊆ X be a
subset. Defining dY (x, y) = d(x, y) for x, y ∈ Y we obtain a metric on Y ; the
resulting metric space (Y, dY ) is said to be a subspace of (X, d).

2.4.1. Observation. Let f : (X1, d1) → (X2, d2) be a (uniformly)
continuous mapping. Let Yi ⊆ Xi be such that f [Y1] ⊆ Y2. Then the mapping
g : (Y1, d1Y1)→ (Y2, d2Y2) defined by g(x) = f(x) is (uniformly) continuous.

2.5. Conventions. 1. Often, if there is no danger of confusion, we use
the same symbol for distinct metrics. In particular we will mostly omit the
subscript Y in the subspace metric dY .

2. Unless stated otherwise, we will endow a subset of a metric space
automatically with the subspace metric. We will speak of subspaces as of

125



the corresponding subsets, and of subsets as of the corresponding subspaces.
Thus we will speak of a “ finite subspace”, an “open subspace” (see 3.4 below)
or, on the other hand. of a “compact subset” (see Section 7), etc.

3. Several topological concepts.

3.1. Convergence. A sequence (xn)n in a metric space (X, d) converges
to x ∈ X if

∀ε > 0 ∃n0 such that ∀n ≥ n0, d(xn, x) < ε.

We then speak of a convergent sequence and the x is called its limit, and we
write

x = lim
n
xn.

3.1.1. Observation. Let (xn)n be a convergent sequence and let x be
its limit. Then each subsequence (xkn)n of (xn)n converges and we have
limn xkn = x.

3.1.2. Theorem. A mapping f : (X1, d1) → (X2, d2) is continuous
if and only if for each convergent sequence (xn)n in (X1, d1) the sequence
(f(xn))n converges in (X2, d2) and limn f(xn) = f(limn xn).

Proof. I. Let f be continuous and let limn xn = x. For ε > 0 choose by
continuity a δ > 0 such that d2(f(y), f(x)) < ε for d1(x, y) < δ. Now by
the definition of the convergence of sequences there is an no such that for
n ≥ n0, d1(xn, x) < δ. Thus, if n ≤ n0 we have d2(f(xn), f(x)) < ε so that
limn f(xn) = f(limn xn).

II. Let f not be continuous. Then there is an x ∈ X1 and an ε0 > 0 such
that for every δ > 0 there is an x(δ) such that

d1(x, x(δ)) < δ but d2(f(x), f(x(δ))) ≥ ε0.

Set xn = x( 1
n
). Then limn xn = x but (f(xn))n cannot converge to f(x). �

Note that the proof is the same as that in IV.5.1, only with the |u− v|
substituted by the distances in the two spaces. In this respect there is nothing
specific about the real functions of one variable.

3.2. Neighbourhoods. For a point x in a metric space (X, d) and ε > 0
set

Ω(X,d)(x, ε) = {y | d(x, y) < ε}
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(if there is no danger of confusion, the subscript “(X, d)” is often omitted,
or replaced just by “X”.

A neighbourhood of a point x in (X, d) is any U ⊆ X such that there is
an ε > 0 with Ω(x, ε) ⊆ U .

3.3.1. Proposition. 1. If U is a neighbourhood of x and U ⊆ V then
V is a neighbourhood of x.

2. If U and V are neighbourhoods of x then the intersection U ∩ V is a
neighbourhood of x.

Proof. 1 is trivial.
2: If Ω(x, ε1) ⊆ U and Ω(x, ε2) ⊆ V then Ω(x,min(ε1, ε2)) ⊆ U ∩V . �

3.3.2. Proposition. Let Y be a subspace of a metric space (X, d). Then
ΩY (x, ε) = ΩX(x, ε) ∩ Y and U ⊆ Y is a neighbourhood of x ∈ Y iff there is
a neighbourhood V of x in (X, d) such that U = V ∩ Y .

Proof is straightforward. �

3.4. Open sets. A subset U ⊆ (X, d) is open if it is a neighbourhood of
each of its points.

3.4.1. Proposition. Each ΩX(x, ε) is open in (X, d).
Proof. Let y ∈ ΩX(x, ε). Then d(x, y) < ε. Set δ = ε − d(x, y). By

triangle inequality, Ω(y, δ) ⊆ Ω(x, ε). �

3.4.2. Observation. ∅ and X are open. If Ui, i ∈ J , are open then⋃
i∈J Ui is open, and if U and V are open then U ∩ V is open.

Proof. The first three statements are obvious and the third one immedi-
ately follows from 2.3.1. �

3.4.3. Proposition. Let Y be a subspace of a metric space (X, d). Then
U is open in Y iff there is a V open in X such that U = V ∩ Y .

Proof. For every V open in X, U ∩Y is open in Y by 3.3.2. On the other
hand, if U is open in Y choose for each x ∈ U an ΩY (x, εx) ⊆ U and set
V =

⋃
x∈U ΩX(x, εx). �

3.5. Closed sets. A subset A ⊆ (X, d) is closed in (X, d) if for every
sequence (xn)n ⊆ A convergent in X the limit limn xn is in A.

3.5.1. Proposition. A subset A ⊆ (X, d) is closed in (X, d) iff the
complement X r A is open.

Proof. I. Let X r A not be open. Then there is a point x ∈ X r A
such that for every n, Ω(x, 1

n
) * X r A, that is, Ω(x, 1

n
) ∩ A 6= ∅. Choose
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xn ∈ Ω(x, 1
n
)∩A. Then (xn)n ⊆ A and the sequence converges to x /∈ A and

hence A is not closed.

II. Let X r A be open and let (xn)n ⊆ A converge to x ∈ X r A.
Then for some ε > 0, Ω(x, ε) ⊆ X r A and hence for sufficiently large n,
xn ∈ Ω(x, ε) ⊆ X r A, a contradiction. �

From 3.5.1, 3.4.2 and DeMorgan formulas we immediately obtain

3.5.2. Corollary. ∅ and X are closed. If Ai, i ∈ J , are closed then⋂
i∈J Ai is closed, and if A and B are closed then A ∪B is closed.

3.5.3. Corollary. Let Y be a subspace of a metric space (X, d). Then
A is closed in Y iff there is a B closed in X such that A = B ∩ Y .

3.6. Distance of a point from a subset. Closure. Let x be a point
and A ⊆ X be a subset of a metric space (X, d). Define the distance of x
from A as

d(x,A) = inf{d(x, a) | a ∈ A}.

The closure of a set A is

A = {x | d(x,A) = 0}.

3.6.1. Proposition. (1) ∅ = ∅.
(2) A ⊆ A,
(3) A ⊆ B ⇒ A ⊆ B,
(4) A ∪B = A ∪B, and

(5) A = A.
Proof. (1): d(x, ∅) = +∞.
(2) and (3) are trivial.
(4): By (3) we have A ∪B ⊇ A ∪ B. Now let x ∈ A ∪B but not x ∈ A.

Then α = d(x,A) > 0 and hence all the y ∈ A∪B such that d(x, y) < α are
in B; hence x ∈ B.

(5): Let d(x,A) be 0. Choose ε > 0. There is a z ∈ A such that
d(x, z) < ε

2
and for this z we can choose a y ∈ A such that d(z, y) < ε

2
. Thus,

by triangle inequality, d(x, y) < ε
2

+ ε
2

= ε and we see that x ∈ A. �

3.6.2. Proposition. A is the set of all the limits of convergent sequences
(xn)n ⊆ A

Proof. A limit of a convergenr (xn)n ⊆ A is obviously in A.
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Now let x ∈ A. If x ∈ A then it is the limit of the constant sequence
x, x, x, . . . . If x ∈ A r A then for each n there is an xn ∈ A such that
d(x, xn) < 1

n
. Obviously x = limn xn. �

3.6.3. Proposition. A is closed and it is the least closed set containing
A. That is,

A =
⋂
{B |A ⊆ B, B closed}.

Proof. Let (xn)n ⊆ A converge to x. For each n choose yn ∈ A such that
d(xn, yn) < 1

n
. Then limn yn = x and x is in A by 3.5.1.

Now let B be closed and let A ⊆ B. If x ∈ A we can choose, by 3.5.1, a
convergent sequence (xn)n in A, and hence in B, such that limxn = x. Thus,
x ∈ B. �

3.6.4. Corollary. Let Y be a subspace of a metric space (X, d). Then
the closure of A in Y is equal to A ∩ Y (where A is the closure in X).

3.7. Theorem. Let (X1, d1), (X2.d2) be metric spaces and let f : X1 →
X2 be a mapping. Then the following statements are equivalent.

(1) f is continuous.

(2) for every x ∈ X1 and for every neighbourhood V of f(x) there is a
neighbourhood U of x such that f [U ] ⊆ V .

(3) for every open U in X2 the preimage f−1[U ] is open in X1.

(4) for every closed A in X2 the preimage f−1[A] is closed in X1.

(5) for every A ⊆ X1, f [A] ⊆ f [A].

Proof. (1)⇒(2): There is an ε > 0 such that Ω(f(x), ε) ⊆ V . Take
the δ from the definition of continuity and set U = Ω(x, δ). Then f [U ] ⊆
Ω(f(x), ε) ⊆ V .

(2)⇒(3): Let U be open and x ∈ f−1[U ]. Thus, f(x) ∈ U and U is a
neighbourhood of f(x). There is a neighbourhood V of x such that f [V ] ⊆ U .
Consequently x ∈ V ⊆ f−1[U ] and f−1[U ] is a neighbourhood of x. Since
x ∈ f−1[U ] was arbitrary, the preimage is open.

(3)⇔(4) by 3.5.1 since preimage preserves complements.
(4)⇒(5): We have A ⊆ f−1[f [A]] ⊆ f−1[f [A]]. By (4), f−1[f [A]] is closed

and hence by 3.5.3, A ⊆ f−1[f [A]] and finally f [A] ⊆ f [A].
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(5)⇒(1): Let ε > 0. Set B = X2 r Ω(f(x), ε) and A = f−1[B]. Then
f [A] ⊆ f [f−1[B]] ⊆ B. Hence x /∈ A (the distance d(f(x), B) is at least ε)
and hence there is a δ > 0 such that Ω(x, δ) ∩A = ∅ and we easily conclude
that f [Ω(x, δ)] ⊆ Ω(f(x), ε). �

3.8. Homeomorfism. Topological concepts. A continuous mapping
f : (X, d) → (Y, d′) is called homeomorphism if there is a continuous g :
(Y, d′) → (X, d) such that f ◦ g = idY and g ◦ f = idX . If there exists a
homeomorphism f : (X, d)→ (Y, d′) we say that the spaces (X, d) and (Y, d′)
are homeomorphic.

A property or definition is said to be topological if it is preserved by
homeomorphisms. Thus we have the following topological properties:

� convergence (see 3.1.2),

� openness (see 3.7),

� closedness (see 3.7).

� closure (although d(x,A) is not topological; see, however, 3.6.3),

� neighbourhood (although Ω(x, ε) is not topological; but realize that A
is a neighbourhood of x if there is an open U such that x ∈ U ⊆ A),

� or continuity itself.

On the other hand, for instance uniform continuity is not a topological pro-
perty.

3.9. Isometry. An onto mapping f : (X, d)→ (Y, d′) is called isometry
if d′(f(x), f(y)) = d(x, y) for all x, y ∈ X. Then, trivially,

� f is one-to-one and continuous, and

� its inverse is also an isometry; thus, f is a homeomorphism.

If there is an isometry f : (X, d) → (Y, d′) the spaces (X, d) and (Y, d′)
are said to be isometric. Of course, an isometry preserves all topological
concepts, but much more, indeed everything that can be defined in terms of
distance.
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4. Equivalent and strongly equivalent metrics.

4.1. Two metrics d1, d2 on a set are said to be equivalent if idX : (X, d1)→
(X.d2) is a homeomorphism. Thus, replacing a metric by an equivalent one
we obtain a space in which all topological notions from the original space are
preserved.

4.2. A much stronger concept is that of a strong equivalence. We say
that d1, d2 on a set are strongly equivalent if there are positive constants α
and β such that for all x, y ∈ X.

α · d1(x, y) ≤ d2(x, y) ≤ β · d1(x, y)

(this relation is of course symmetric: consider 1
α

and 1
β
).

Note that

replacing a metric by a strongly equivalent one preserves not only topo-
logical properties but also for instance the uniform convergence.

4.3. The concept of strong equivalence will help us to reason much more
easily in Euclidean spaces {(x1, . . . , xn) |xi ∈ R} where we so far had the
distance

d((x1, . . . , xn), (y1, . . . , yn)) =

√√√√ n∑
i=1

(xi − yi)2.

Set

λ((x1, . . . , xn), (y1, . . . , yn)) =
n∑
i=1

|xi − yi|, and

σ((x1, . . . , xn), (y1, . . . , yn)) = max
i
|xi − yi|.

4.3.1. Proposition. d, λ and σ are strongly equivalent metrics on En.
Proof. It is easy to see that λ and σ are metrics.
Now we have

λ((xi)i, (yi)i) =
n∑
i=1

|xi − yi| ≤ nσ((xj)j, (yj)j)
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since for each i, |xi − yi| ≤ σ((xj)j, (yj)j), and for the same reason

d((xi)i, (yi)i) =

√√√√ n∑
i=1

(xi − yi)2 ≤
√
nσ((xj)i, (yj)j).

On the other hand obviously

σ((xi)i, (yi)i) ≤ λ((xi)i, (yi)i) and σ((xi)i, (yi)i) ≤ d((xi)i, (yi)i).

�

In the sequel we will mostly work with the Euclidean space as with (En, σ).

5. Products.

5.1. Let (X1, di), i = 1, . . . , n be metric spaces. On the cartesian product

n∏
i=1

Xi

define a metric

d((x1, . . . , xn), (y1, . . . , yn)) = max
i
di(xi, yi).

The resulting metric space will be denoted by
∏n

i=1(Xi, di).

5.1.1. Notation. We will also write

(X1, d1)× (X2, d2) or (X1, d1)× (X2, d2)× (X3, d3)

for
∏2

i=1(Xi, di) or
∏3

i=1(Xi, di), and sometimes also

(X1, d1)× · · · × (Xn, dn)

for the general
∏n

i=1(Xi, di).
Further, if (Xi, di) = (X, d) for all i we write

n∏
i=1

(Xi, di) = (X, d)n.
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5.1.2. Remarks. 1. Thus, (En, σ) is the product

n times︷ ︸︸ ︷
R× · · · × R = Rn.

2. For our purposes we could have defined the metric in the product by

d((xi)i, (yi)i) =

√√√√ n∑
i=1

di(xi, yi)2 or d((xi)i, (yi)i) =
n∑
i=1

di(xi, yi),

but working with the d above is much easier.

5.2. Lemma. A sequence

(x11, . . . , x
1
n), (x21, . . . , x

2
n), . . . , (xk1, . . . , x

k
n), . . .

converges to (x1, . . . , xn) in
∏

(Xi, di) if and only if each of the sequences
(xki )k converges to xi in (Xi, di).

(Caution: the superscripts k are indices, not powers.)
Proof. ⇒ immediately follows from the fact that di(ui, vi) ≤ d((uj)j, (vj)j).

⇐: Let each of the (xki )k converge to xi. For an ε > 0 and i we have ki
such that for k ≥ ki, di(x

k
i , xi) < ε. Then for k ≥ maxi ki we have

d((xk1, . . . , x
k
n), (x1, . . . , xn)) < ε.

�

5.3. Theorem. 1. The projection mappings pj = ((xi)i 7→ xj) :∏n
i=1(Xi, di)→ (Xj, dj) are continuous.
2. Let f:(Y, d

′) → (Xj, dj) be arbitrary continuous mapings. Then the
unique mapping f : (Y, d′)→

∏n
i=1(Xi, di) such that pj ◦ f = fj, namely that

defined by f(y) = (f1(y), . . . , fn(y)), is continuous.
Proof. 1 immediately follows from the fact that dj(xj, yj) ≤ d((xi)i, (yi)i).
2: Follows from 3.1.2 and 5.2. If limk yk = y in (Y, d′) then limk fj(yk) =

fj(y) in (Xj, dj) for all j and hence (f(yk))k, that is,

(f1(y1), . . . , fn(y1)), (f1(y2), . . . , fn(y2)), . . . , (f1(yk), . . . , fn(yk)), . . .

converges to (f1(y), . . . , fn(y)). �

5.4. Observation. Obviously
∏n+1

i=1 (Xi, di) is isometric (recall 3.9) with∏n
i=1(Xi, di)× (Xn+1, dn+1). Consequenly, it usually suffices to prove a state-

ment on finite products for products of two spaces only.
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6. Cauchy sequences. Completeness.

6.1. A sequence (xn)n in a metric space (X, d) is said to be Cauchy if

∀ε > 0 ∃n0 such that m,n ≥ n0 ⇒ d(xm, xn) < ε.

6.1.1. Observation. Each convergent sequence is Cauchy.
(Just like in R: if d(xn, x) < ε for n ≥ n0 then for m,n ≥ n0,

d(xn, xm) ≤ d(xn, x) + d(x, xm) < 2ε.)

6.2. Proposition. Let a Cauchy sequence have a convergent subse-
quence. Then it converges (to the limit of the subsequence).

Proof. Let (xn)n be Cauchy and let limn xkn = x. Let d(xm, xn) < ε for
m,n ≥ n1 and d(xkn , x) ≤ ε for n ≥ n2. If we set n0 = max(n1, n2) we have
for n ≥ n0 (since kn ≥ n)

d(xn, x) ≤ d(xn, xkn) + d(xkn , x) < 2ε.

�

6.3. A metric space (X, d) is complete if each Cauchy sequence in (X, d)
converges.

6.3.1. Thus, by Bolzano-Cauchy Theorem (II.3.4) the real line R with
the standard metric is complete.

6.4. Proposition. A subspace of a complete space is complete if and
only if it is closed.

Proof. I. Let Y ⊆ (X, d) be closed. Let (yn)n be Cauchy in Y . Then it is
Cauchy and hence convergent in X, and the limit, by closedness, is in Y .

II. Let Y not be closed. Then there is a sequence (yn)n in Y convergent in
X such that limn yn /∈ Y . Then (yn)n is Cauchy in X, but since the distance
is the same, also in Y . But in Y it does not converge. �

6.5. Lemma. A sequence

(x11, . . . , x
1
n), (x21, . . . , x

2
n), . . . , (xk1, . . . , x

k
n), . . .

is Cauchy in
∏n

i=1(Xi, di) if and only if each of the sequences (xki )k is Cauchy
in (Xi, di).
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Proof. ⇒ immediately follows from the fact that di(ui, vi) ≤ d((uj)j, (vj)j).

⇐: Let each of the (xki )k be Cauchy. For an ε > 0 and i we have ki such
that for k, l ≥ ki, di(x

k
i , x

l
i) < ε. Then for k, l ≥ maxi ki we have

d((xk1, . . . , x
k
n), (xl1, . . . , x

l
n)) < ε.

�

Combining 5.2 and 6.5 (and, of course, 6.3.1) we immediately obtain

6.6. Proposition. A product of complete spaces is complete. In parti-
cular, the Euclidean space En is complete.

From 6.6 and 6.4 we imediately infer

6.7. Corollary. A subspace Y of the Euclidean space En is complete if
and only if it is closed.

6.8. Note. Neither the Cauchy property nor completeness is a topolog-
ical property. Consider R and any bounded open interval J in R. They are
homeomorphic (if for instance J = (−π

2
,+π

2
) we have the mutually inverse

homeomorphisms tan : J → R and arctg : R → J). But R is complete and
J is not.

But it is easy to see that the properties are preserved when replacing a
metric by a strongly equivalent one. This concerns, of course, in particular
the metrics in En mentioned in Section 4.

7. Compact metric spaces.

7.1. A metric space (X, d) is said to be compact if each sequence in (X, d)
contains a convergent subsequence.

7.1.1. Note. Thus the compact intervals, that is the bounded closed
intervals 〈a, b〉, are compact in this definition, and they are the only compact
ones among the various types of intervals.

7.2. Proposition. A subspace of a compact space is compact if and only
if it is closed.

Proof. I. Let Y ⊆ (X, d) be closed. Let (yn)n be a sequence in Y . In X
it has a convergent subsequence (ykn)n convergent in X, and the limit, by
closedness, is in Y .
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II. Let Y not be closed. Then there is a sequence (yn)n in Y convergent
in X such that y = limn yn /∈ Y . Then (yn)n cannot have a subsequence
convergent in Y since each subsequence converges to y. �

7.3. Proposition. Let (X, d) be arbitrary and let a subspace Y of X be
compact. Then Y is closed in (X, d).

Proof. Let (yn)n be a sequence in Y convergent in X to a limit y. Then
each subsequence of (yn)n converges to y and hence y ∈ Y . �

7.4. A metric space (X, d) is said to be bounded if there is a constant K
such that

∀x, y ∈ X, d(x, y) < K.

7.4.1. Proposition. Each compact metric space is bounded.
Proof. Suppose not. Choose x1 arbitrarily and then xn so that d(x1, xn) >

n. The sequence (xn)n has no convergent subsequence: if x were a limit of
such a subsequence we would have infinitely many members of this subse-
quence closer to x1 than d(x1, x) + 1, a contradiction. �

7.5. Theorem. A product of finitely many compact metric spaces is
compact.

Proof. By 5.4 it suffices to prove the statement for two spaces.
Let (X, d1), (Y, d2) be compact and let ((xn, yn))n be a sequence in X×Y .

Choose a convergent subsequence (xkn)n of (xn)n and a convergent subse-
quence (ykln )n of (ykn)n. Then by 5.2.

((xkln , ykln ))n

is a convergent subsequence of ((xn, yn))n. �

7.6. Theorem. A subspace of the Euclidean space En is compact if and
only if it is bounded and closed.

Proof. I. A compact subspace of any metric space is closed by 7.3 and
bounded by 7.4.1.

II. Now let Y ⊆ En be bounded and closed. Since it is bounded we have
for a sufficiently large compact interval

Y ⊆ Jn ⊆ En.

Now by 7.5 Jn is compact and since Y is closed in En it is also closed in Jn

and hence compact by 7.2. �
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7.7. Proposition. Each compact space is complete.
Proof. A Cauchy sequence has by compactness a convergent subsequence

and hence it converges, by 6.2. �

7.8. Proposition. Let f : (X, d)→ (Y, d′) be a continuous mapping and
let A ⊆ X be compact. Then f [A] is compact.

Proof. Let (yn)n be a sequence in f [A]. Choose xn ∈ A such that yn =
f(xn). Let (xkn)n be a convergent subsequence of (xn)n. Then (ykn)n =
(f(xkn))n is by 3.1.2 a convergent subsequence of (xn)n. �

7.9. Proposition. Let (X, d) be compact. Then a continuous function
f : (X, d)→ R attains a maximum and a minimum.

Proof. By 7.8, Y = f [X] ⊆ R is compact. Hence it is bounded by 7.4.1
and it has to have a supremum M and an infimum m. We have obviously
d(m,Y ) = d(M,Y ) = 0 and since Y is closed, m,M ∈ Y . �

7.9.1. Corollary. Let all the values of a continuous function on a
compact space be positive. Then there is a c > 0 such that all the values of f
are greater or equal c.

We already know that a continuous mapping f is characterized by the
property that preimages of closed sets are closed. Now by 7.2 and 7.8 we
see that if the domain is compact we also have that images of closed sets are
closed. This results (a.o.) in the following theorem.

7.10. Theorem. Let (X, d) be compact and let f : (X, d)→ (Y, d′) be a
one-to-one and onto continuous map. Then f is a homeomorphism.

More generally, let f : (X, d) → (Y, d′) be an onto continuous map let
g : (X, d) → (Z, d′′) be a continuous map, and let h : (Y, d′) → (Z, d′′) be
such that h ◦ f = g. Then h is continuous.

Proof. We will prove the second statement: the first one follows by setting
g = idY .

Let B be closed in Z. Then A = g−1[B] is closed and hence compact in
X and hence f [A] is compact and hence closed in Y . Since f is onto we have
f [f−1[C]] = C for any C. Thus,

h−1[B] = f [f−1[h−1[B]]] = f [(h ◦ f)−1[B]] = f [g−1[B]] = f [A]

is closed. �
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7.11. Theorem. Let (X, d) be a compact space. Then a mapping f :
(X, d)→ (Y, d′) is continuous if and only if it is uniformly continuous.

Note. Similarly as in 3.1.2 we can repeat practically verbatim the proof
of the corresponding statement on real functions on compact intervals.

Proof. Let f not be uniformly continuous. We will prove it is not contin-
uous either.

Since the formula for uniform continuity does not hold we have an ε0 > 0
such that for every δ > 0 there are x(δ), y(δ) such that d(x(δ), y(δ)) < δ while
d′(f(x(δ)), f(y(δ))) ≥ ε0. Set xn = x( 1

n
) and yn = y( 1

n
). Choose convergent

subsequences (x̃n)n, (ỹn)n (first choose a convergent subsequence (xkn)n of
(xn)n then a convergent subsequence (ykln )n of (ynk)k and finally set x̃n = xkln
and ỹn = ykln ). Then d(x̃n, ỹn) < 1

n
and hence lim x̃n = lim ỹn. Because of

d′(f(x̃n), f(ỹn)) ≥ ε0, however, we cannot have lim f(x̃n) = lim f(ỹn) so that
by 3.1.2, f is not continuous. �
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XIV. Partial derivatives and total differential.

Chain rule

1. Conventions.

1.1. We will work with real functions of several real variables, that is,
with mappings f : D → R where the domain D is a subset of En. When
taking derivatives, D will be typically open. Sometimes we will also have
closed domains, usually closures of open sets with transparent boundaries.

We already know (recall XIII.1) that the behaviour of such functions
cannot be reduced to that of functions of one variable obtained by fixing all
the variables but one. But this will not prevent us from such fixings in some
constructions (for instance already in the definition of partial derivative in
the next section).

1.2. Convention. To simplify notation, we will often use bold-face
letters to indicate points of the Euclidean space En (that is, n-tuples of real
numbers, real arithmetic vectors). For example, we will write

x for (x1, . . . , xn) or A for (A1, . . . , An).

We will also write
o for (0, 0, . . . , 0).

In the rare cases when we will use subscripts with bold-face letters, e.g.
a1, a2, . . . we will always have in mind several points, never coordinates of a
single point a.

The scalar product of vectors x, y, that is,
∑n

j=1 xjyj, will be written as

xy.

1.3. Extending the convention. The “bold face” convention will be
also used for vector functions, that is,

f = (f1, . . . , fm) : D → Em, fj : D → R.

Note that here there is no problem with continuity: f is continuous iff all the
fi are continuous (recall XIII.5.3).
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1.4. Composition. Vector functions f : D → Em, D ⊆ En, and
g : D′ → Ek, D ⊆ En can be composed if f[D] ⊆ D′, and we shall write

g ◦ f : D → Ek, (if there is no danger of confusion, just gf : D → Ek),

Note that, similarly like with real functions of one real variable, we refrain
from pedantic renaming the f when restricted to a map D → D′.

2. Partial derivatives

2.1. Let f : D → R be a real function of n variables. Consider the
functions

φk(t) = f(x1, . . . , xk−1, t, xk+1, . . . , xn), all xj with j 6= k fixed.

The partial derivative of f by xk (at the point (x1, . . . , xn)) is the (ordinary)
derivative of the function φk, that is, the limit

lim
h→0

f(x1, . . . xk−1, xk + h, xk+1, . . . , xn)− f(x1, . . . , xn)

h
.

One sometimes speaks of the k-th partial derivative of f but one has to be
careful not to confuse this expression with a derivative of higher order.

The standard notation is

∂f(x1, . . . , xn)

∂xk
or

∂f

∂xk
(x1, . . . , xn),

in case of denoting variables by different letters, say f(x, y), we write, of
course,

∂f(x, y)

∂x
and

∂f(x, y)

∂y
, etc.

This notation is not quite consistent: the xk in the “denominator” ∂xk just
indicates focusing to the k-th variable while the xn in the f(x1, . . . , xn) in
the “numerator” may refer to an actual value of the argument. This usually
does not create any misunderstanding. If there is a danger of confusion we
can write e.g.

∂f(x1, . . . , xn)

∂xk

∣∣∣∣
(x1,...,xn)=(a1,...,an)

.
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However, one rarely needs such a specification.

2.2. Similarly as with the standard derivative it can happen (and typi-

cally it does) that a partial derivative ∂f(x1,...,xn)
∂xk

exists for all (x1, . . . , xn) in
some domain D′. In such case, we have a function

∂f

∂xk
: D′ → R.

It is usually obvious from the context whether, speaking of a partial deriva-
tive, we have in mind a function or just a number (the value of the limit
above).

2.3. The function f from XIII.1.2 has both partial derivatives in every
point (x, y). Thus we see that unlike the standard derivative of a real function
with one real variable, the existence of partial derivatives does not imply
continuity. For calculus in several variables we will need a stronger concept.
It will be discussed in the next section.

3. Total differential.

3.1. Recall VI.1.5. The formula f(x + h) − f(x) = Ah (we are ne-
glecting the “small part” |h| · µ(h)) expresses the line tangent to the curve
{(t, f(t)) | t ∈ D} at the point (x, f(x)). Or, it can be viewed as a linear
approximation of the function in the vicinity of this point.

Now think of a function f(x, y) in this vein (the problem with more than
two variable is the same) and consider the surface

S = {(t, u, f(t, u)) | (t, u) ∈ D}.

The two partial derivatives express the directions of two tangent lines to S
in the point (x, y, f(x, y)),

� but not the tangent plane (and only that would be a desirable extension
of the fact in VI.1.5),

� and do not provide any linear approximation of the function.
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This will be mended by the concept of total differential.

3.2. The norm. For a point x ∈ En we define the norm ||x|| as the
distance of x from o. Thus, we will typically use the formula

||x|| = max
i
|xi|

(but ||x|| =
∑n

i=1 |xi| or the standard Pythagorean ||x|| =
√
x · x would yield

the same results, recall XIII.4).

3.3. Total differential. We say that f(x1, . . . , xn) has a total differen-
tial at a point a = (a1, . . . , an) if there exists a function µ continuous in a
neighborhood U of o which satisfies µ(o) = 0 (in another, equivalent, formu-
lation, one requires µ to be defined in U r {o} and satisfy limh→o µ(h) = 0),
and numbers A1, . . . , An such that

f(a + h)− f(a) =
n∑
k=1

Akhk + ||h||µ(h).

3.3.1. Notes. 1. Using the scalar product we may write f(a+h)−f(a) =
Aa + ||h||µ(h)).

2. Note that we have not defined a total differential as an entity, only the
property of a function “to have a total differential”. We will leave it at that.

3.4. Proposition. Let a function f have a total differential at a point
a. Then

1. f is continuous in a.
2. f has all the partial derivatives in a, with values

∂f(a)

∂xk
= Ak.

Proof. 1. We have

|f(x− y)| ≤ |A(x− y)|+ |µ(x− y)||x− y||

and the limit of the right hand side for y→ x is obviously 0.
2. We have

1

h
(f(x1, . . . xk−1,xk + h, xk+1, . . . , xn)− f(x1, . . . , xn)) =

= Ak + µ((0, . . . , 0, h, 0, . . . , 0))
||(0, . . . , h, . . . , 0)||

h
,
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and the limit of the right hand side is clearly Ak. �

3.5. Now we have a linear approximation: the formula

f(x1 +h1 . . . , xn+hn)−f(x1, . . . xn) = f(a+h)−f(a) =
n∑
k=1

Akhk + ||h||µ(h)

can be interpreted as saying that in a small neighborhood of a, the function
f is well approximated by the linear function

L(x1, . . . , xn) = f(a1, . . . , an) +
∑

Ak(xk − ak).

By the required properties of µ, the error is much smaller than the difference
x− a.

In case of just one variable, there is no difference between having a deriva-
tive at a point a and having a total differential at the same point (recall
VI.1.5). In case of more than one variable, however, the difference between
having all partial derivatives and having a total differential at a point is
tremendous.

What is happening geometrically is this: If we think of a function f as
represented by its “graph”, the hypersurface

S = {(x1, . . . , xn, f(x1, . . . , xn)) | (x1, . . . , xn) ∈ D} ⊆ En+1,

the partial derivatives describe just the tangent lines in the directions of the
coordinate axes (recall 3.1), while the total differential describes the entire
tangent hyperplane.

3.6. It may be slightly surprising that, while the plain existence of partial
derivative does not amount to much, possessing continuous partial derivatives
is quite another matter. We have

Theorem. Let f have continuous partial derivatives in a neighborhood
of a point a. Then f has a total differential at a.

Proof. Let

h(0) = h, h(1) = (0, h2, . . . , hn), h(2) = (0, 0, h3, . . . , hn) etc.

(so that h(n) = o). Then we have

f(a + h)− f(a) =
n∑
k=1

(f(a + h(k−1))− f(a + h(k))) = M.
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By Lagrange Theorem (VII.2.2), there are 0 ≤ θk ≤ 1 such that

f(a + h(k−1))− f(a + h(k)) =
∂f(a1, . . . , ak−1, ak + θkhk, ak+1, . . . , an)

∂xk
hk

and hence we can proceed

M =
∑ ∂f(a1, . . . , ak + θkhk, . . . , an)

∂xk
hk =

=
∑ ∂f(a)

∂xk
hk +

∑(
∂f(a1, . . . , ak + θkhk, . . . , an)

∂xk
− ∂f(a)

∂xk

)
hk =

=
∑ ∂f(a)

∂xk
hk + ||h||

∑(
∂f(a1, . . . , ak + θkhk, . . . , an)

∂xk
− ∂f(a)

∂xk

)
hk
||h||

.

Set

µ(h) =
∑(

∂f(a1, . . . , ak + θkhk, . . . , an)

∂xk
− ∂f(a)

∂xk

)
hk
||h||

.

Since

∣∣∣∣ hk||h||
∣∣∣∣ ≤ 1 and since the functions ∂f

∂xk
are continuous, limh→o µ(h) = 0.

�

3.7. Thus, we can write schematically

continuous PD ⇒ TD ⇒ PD

(where PD stands for all partial derivatives and TD for total differential).
Note that neither of the implication can be reversed. We have already dis-
cussed the second one; for the first one, recall that for functions of one variable
the existence of a derivative at a point coincides with the existence of a total
differential, while a derivative is not necessarily a continuous function even
when it exists at every point of an open set.

In the rest of this chapter, simply assuming that partial derivatives exist
will almost never be enough. Sometimes the existence of the total differential
will suffice, but more often than not we will assume the stronger existence of
continuous partial derivatives.
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4. Higher order partial derivatives.

Interchangeability

4.1. Recall 2.2. When we have a function g(x) = ∂f(x)
∂xk

then similarly as
taking the second derivative of a function of one variable, we may consider
partial derivatives of g(x), that is,

∂g(x)

∂xl
.

The result, if it exists, is then denoted by

∂2f(x)

∂xk∂xl
.

More generally, iterating this procedure we may obtain

∂rf(x)

∂xk1∂xk2 . . . ∂xkr
,

the partial derivatives of order r.
Note that the order is given by the number of taking derivatives and does

not depend on repeated individual variables. Thus for example,

∂3f(x, y, x)

∂x∂y∂z
and

∂3f(x, y, x)

∂x∂x∂x

are derivatives of third order (even though in the former case we have taken
a partial derivative by each variable only once).

To simplify notation, taking a partial derivatives by the same variable
more than once consecutively may be indicated by an exponent, e.g.

∂5f(x, y)

∂x2∂y3
=

∂5f(x, y)

∂x∂x∂x∂y∂y
,

∂5f(x, y)

∂x2∂y2∂x
=

∂5f(x, y)

∂x∂x∂y∂y∂x
.

4.2. Example. Compute the “mixed” second order derivatives of the
function f(x, y) = x sin(y2 + x). We obtain, first,

∂f(x, y)

∂x
= sin(y2 + x) + x cos(y2 + x) and

∂f(x, y)

∂y
= 2xy cos(y2 + x).
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Now for the second order derivatives we get

∂2f

∂x∂y
= 2y cos(y2 + x)− 2xy sin(y2 + x) =

∂2f

∂y∂x
.

Whether it is surprising or not, it suggests that higher order partial deriva-
tives may not depend on the order of differentiation. In effect this is true –
provided all the derivatives in question are continuous (it should be noted,
though, that without this assumption the equality does not necessarily hold).

4.2.1. Proposition. Let f(x, y) be a function such that the partial

derivatives ∂2f
∂x∂y

and ∂2f
∂y∂x

are defined and continuous in a neighborhood of a

point (x, y). Then we have

∂2f(x, y)

∂x∂y
=
∂2f(x, y)

∂y∂x
.

Proof. The idea of the proof is easy: we compute the second derivative in
one step. This leads, as one easily sees, to computing the limit limh→0 F (h)
of the function

F (h) =
f(x+ h, y + h)− f(x, y + h)− f(x+ h, y) + f(x, y)

h2

and this is what we are going to do.
Setting

ϕh(y) = f(x+ h, y)− f(x, y) and

ψk(x) = f(x, y + k)− f(x, y),

we obtain two expressions for F (h):

F (h) =
1

h2
(ϕh(y + h)− ϕh(y)) and F (h) =

1

h2
(ψh(x+ h)− ψh(x)).

Let us compute the first one. The function ϕh, which is a function of one
variable y, has the derivative

ϕ′h(y) =
∂f(x+ h, y)

∂y
− ∂f(x, y)

∂y

and hence by Lagrange Formula VI.2.2, we have

F (h) =
1

h2
(ϕh(y + h)− ϕh(y)) =

1

h
ϕ′h(y + θ1h) =

=
∂f(x+ h, y + θ1h)

∂y
− ∂f(x, y + θ1h)

∂y
.
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Then, using VI.2.2 again, we obtain

F (h) =
∂

∂x

(
∂f(x+ θ2h, y + θ1h)

∂y

)
(∗)

for some θ1, θ2 between 0 and 1.
Similarly, computing 1

h2
(ψh(x+ h)− ψh(x)) we obtain

F (h) =
∂

∂y

(
∂f(x+ θ4h, y + θ2h)

∂x

)
. (∗∗)

Now since both ∂
∂y

(∂f
∂x

) and ∂
∂x

(∂f
∂y

) are continuous at the point (x, y), we can

compute limh→0 F (h) from either of the formulas (∗) or (∗∗) and obtain

lim
h→0

F (h) =
∂2f(x, y)

∂x∂y
=
∂2f(x, y)

∂y∂x
.

�

4.3. Iterating the interchanges allowed by 4.2.1 we obtain by an easy
induction

Corollary. Let a function f of n variables possess continuous partial
derivatives up to the order k. Then the values of these drivatives depend only
on the number of times a partial derivative is taken in each of the individual
variables x1, . . . , xn.

4.3.1. Thus, under the assumption of Theorem 4.3, we can write a general
partial derivative of the order r ≤ k as

∂rf

∂xr11 ∂x
r2
2 . . . ∂x

rn
n

with r1 + r2 + · · ·+ rn = r

where, of course, rj = 0 is allowed and indicates the absence of the symbol
∂xj.

5. Composed functions and the Chain Rule.

Recall the proof of the rule of the derivative for composed functions in
VI.2.2.1. It was based on the “total differential formula for one variable”.
By an analogous procedure we will obtain the following
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5.1. Theorem. (Chain Rule in its simplest form) Let f(x) have a total
differential at a point a. Let real functions gk(t) have derivatives at a point
b and let gk(b) = ak for all k = 1, . . . , n. Put

F (t) = f(g(t)) = f(g1(t), . . . , gn(t)).

Then F has a derivative at b, and

F ′(b) =
n∑
k=1

∂f(a)

∂xk
· g′k(b).

Proof. Applying the formula from 3.3 we get

1

h
(F (b+ h)− F (b)) =

1

h
(f(g(b+ h))− f(g(b)) =

=
1

h
(f(g(b) + (g(b+ h)− g(b)))− f(g(b)) =

=
n∑
k=1

Ak
gk(b+ h)− gk(b)

h
+ µ(g(b+ h)− g(b)) max

k

|gk(b+ h)− gk(b)|
h

.

We have limh→0 µ(g(b+ h)− g(b)) = 0 since the functions gk are continuous

at b. Since the functions gk have derivatives, the values maxk
|gk(b+h)−gk(b)|

h

are bounded in a sufficiently small neighborhood of 0. Thus, the limit of the
last summand is zero and we have

lim
h→0

1

h
(F (b+ h)− F (b)) = lim

h→0

n∑
k=1

Ak
gk(b+ h)− gk(b)

h
=

=
n∑
k=1

Ak lim
h→0

gk(b+ h)− gk(b)
h

=
n∑
k=1

∂f(a)

∂xk
g′k(b).

�

5.1.1. Corollary. (The Chain Rule) Let f(x) have a total differential
at a point a. Let real functions gk(t1, . . . , tr) have partial derivatives at b =
(b1, . . . , br) and let gk(b) = ak for all k = 1, . . . , n. Then the function

(f ◦ g)(t1, . . . , tr) = f(g(t)) = f(g1(t), . . . , gn(t))
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has all the partial derivatives at b, and

∂(f ◦ g)(b)

∂tj
=

n∑
k=1

∂f(a)

∂xk
· ∂gk(b)

∂tj
.

5.1.2. Note. Just possessing partial derivatives would not suffice. The
assumption of the existence of total differential in 5.1 is essential and it is easy
to see why. Recall the geometric intuition from 3.1 and the last paragraph
of 3.5. The n-tuple of functions g = (g1, . . . , gn) represents a parametrized
curve in D, and f ◦ g is then a curve on the hypersurface S. The partial
derivatives of f (or the tangent lines of S in the directions of the coordinate
axes) have in general nothing to do with the behaviour on this curve.

5.2. The rules for multiplication and division as a consequence
of the chain rule. As we have already mentioned, the Chain Rule (including
its proof) is a more or less immediate extension of the composition rule in one
variable. It may come as a surprise that it includes the rules for multiplication
and division.

Consider f(x, y) = xy. Then ∂f
∂x

= y and ∂f
∂y

= x and hence

(u(t)v(t))′ = f(u(t), v(t))′ =
∂f(u(t), v(t))

∂x
v′(t) +

∂f(u(t), v(t))

∂y
u′(t) =

= v(t) · u′(t) + u(t) · v′(t).

Similarly for f(x, y) = x
y

we have ∂f
∂x

= 1
y

and ∂f
∂y

= − x
y2

and consequently

u(t)

v(t)

′

=
1

v(t)
u′(t)− u(t)

v2(t)
=
v(t)u′(t)− u(t)v′(t)

v2(t)
.

5.3. Chain rule for vector functions. Let us make one more step and
consider in 5.1.1 a mapping f = (f1, . . . , fs) : D → Es. Take its composition
f ◦ g with a mapping g : D′ → En (recall the convention in 1.4). Then we
have

∂(f ◦ g)

∂tj
=
∑
k

∂fi
∂xk
· ∂gk
∂xj

. (∗)

It certainly has not escaped the reader’s attention that the right hand side
is the product of matrices (

∂fi
∂xk

)
i,k

(
∂gk
∂xj

)
k,j
. (∗∗)
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Recall from linear algebra the role of matrices in describing linear functions
L : Vn → Vm. In particular recall that a composition of linear mappings
results in the product of the associated matrices. Then the formulas (∗)
resp. (∗∗) should not be surprising: they represent a fact to be expected,
namely that the linear approximation of a composition f◦g is the composition
of the linear approximations of f and g .

5.3.1. Following the above comment, we may express the chain rule in
matrix form as follows. For an f = (f1, . . . , fs) : U → Es, D ⊆ En, define Df
as the matrix

Df =
(
∂fi
∂xk

)
i,k
.

Then we have
D(f ◦ g) = Df ·Dg.

More explicitly, in a concrete argument t we have

D(f ◦ g)(t) = Df(g(t)) ·Dg(t).

Compare it with the one variable rule

(f ◦ g)′(t) = f ′(g(t)) · g′(t);

for 1× 1 matrices we of course have (a)(b) = (ab).

5.4. Lagrange Formula in several variables. Recall that a subset
U ⊆ En is said to be convex if

x, y ∈ U ⇒ ∀t, 0 ≤ t ≤ 1, (1− t)x + ty = x + t(y − x) ∈ U.

5.4.1. Proposition. Let f have continuous partial derivatives in a
convex open set U ⊆ En. Then for any two points x, y ∈ D, there exists a θ
with 0 ≤ θ ≤ 1 such that

f(y)− f(x) =
n∑
j=1

∂f(x + θ(y − x))

∂xj
(yj − xj).

Proof. Set F (t) = f(x + t(y− x)). Then F = f ◦ g where g is defined by
gj(t) = xj + t(yj − xj), and

F ′(t) =
n∑
j=1

∂f(g(t))

∂xj
g′j(t) =

n∑
j=1

∂f(g(t))

∂xj
(yj − xj).
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Hence by VII.2.2,

f(y)− f(x) = F (1)− F (0) = F ′(θ)

which yields the statement. �

Note. The formula is often used in the form

f(x + h)− f(x) =
n∑
j=1

∂f(x + θh)

∂xj
hj.

Compare this with the formula for total differential.
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XV. Implicit Function Theorems

1. The task.

1.1. Suppose we have m real functions Fk(x1, . . . , xn, y1, . . . ym), k =
1, . . . ,m, of n+m variables each. Consider the system of equations

F1(x1, . . . , xn, y1, . . . ym) = 0

. . . . . . . . .

Fm(x1, . . . , xn, y1, . . . ym) = 0

We would like to find a solution y1, . . . , ym. Better, using the convention of
XIV.1, we have a system of m equations of m unknowns (the number n of
the variablex xj is inessential)

Fk(x, y1, . . . ym) = 0, k = 1, . . . ,m (∗)

and we are looking for solutions yk = fk(x) (= f(x1, . . . , xn)).

1.2. Even in simplest cases we cannot expect to have necessarily a so-
lution, not to speak of a unique one. Take for example the following single
equation

F (x, y) = x2 + y2 − 1 = 0.

For |x| > 1 there is no y with f(x, y) = 0. For |x0| < 1, we have in a
sufficiently small open interval containing x0 two solutions

f(x) =
√

1− x2 and g(x) = −
√

1− x2.

This is better, but we have two values in each point, contradicting the defi-
nition of a function. To achieve uniqueness, we have to restrict not only the
values of x, but also the values of y to an interval (y0 − ∆, y0 + ∆) (where
F (x0, y0) = 0). That is, if we have a particular solution (x0, y0) we have a
“window”

(x0 − δ, x0 + δ)× (y0 −∆, y0 + ∆)

through which we see a unique solution.
But in our example there is also the case (x0, y0) = (1, 0), where there is

a unique solution, but no suitable window as above, since in every neighbor-
hood of (1, 0), there are no solutions on the right hand side of (1, 0), and two
solutions on the left hand side.
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Note that in the critical points (1, 0) and (−1, 0) we have

∂F

∂y
(1, 0) =

∂F

∂y
(−1, 0) = 0. (∗∗)

1.3. In this chapter we will show that for functions Fk with continuous
partial derivatives the situation is not worse than in the example above:

� we will have to have some points x0, y0 such that Fk(x0, y0) = 0 to start
with;

� with certain exceptions we then have “windows” U×V such that for x ∈
U there is precisely one y ∈ V , that is, yk = f(x1, . . . , xn), satisfying
the system of equations;

� and the exceptions are natural extensions of the condition associated
with the (∗∗) above: instead of ∂F

∂y
(x0, y0) 6= 0 we will have D(F)

D(y)
(x0, y0) 6=

0 for something related, called Jacobian.

Furthermore, the solutions will have continuous partial derivatives as long as
the Fj have them.

2. One equation.

2.1. Theorem. Let F (x, y) be a function of n+ 1 variables defined in a
neighbourhood of a point (x0, y0). Let F have continuous partial derivatives
up to the order k ≥ 1 and let

F (x0, y0) = 0 and

∣∣∣∣∂F (x0, y0)

∂y

∣∣∣∣ 6= 0.

Then there exist δ > 0 and ∆ > 0 such that for every x with ||x − x0|| < δ
there exists precisely one y with |y − y0| < ∆ such that

F (x, y) = 0.

Furthermore, if we write y = f(x) for this unique solution y, then the function

f : (x01 − δ, x01 + δ)× · · · × (x0n − δ, x0n + δ)→ R
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has continuous partial derivatives up to the order k.

Before the proof. The reader is advised to reproduce the following
proof as if there were just one real variable x. This simplification will make
the procedure more transparent without losing anything of the ideas. The
general x just needs more complicated notation which might slightly obscure
some of the steps.

Proof. The norm ||x|| will be as in IV.3.2, that is maxi |xi|. Set

U(γ) = {x | ||x− x0|| < γ} and A(γ) = {x | ||x− x0|| ≤ γ}

(the “window” we are seeking will turn out to be U(δ)× (y0 −∆, y0 + δ)).
Without loss of generality let, say,

∂F (x0, y0)

∂y
> 0.

The first partial derivatives of F are continuous and A(δ) is closed and
bounded and hence compact by XIII.7.6. Hence, by XIII.7.9 there exist
a > 0, K, δ1 > 0 and ∆ > 0 such that for all (x, y) ∈ U(δ1)×〈y0−∆, y0 +∆〉
we have

∂F (x, y)

∂y
≥ a and

∣∣∣∣∂F (x, y)

∂xi

∣∣∣∣ ≤ K. (∗)

I. The function f : Fix an x ∈ U(δ1), and define a function of one variable
y ∈ (y0 −∆, y0 + ∆) by

ϕx(y) = F (x, y).

Then ϕ′x(y) = ∂F (x,y)
∂y

> 0 and hence

all ϕx(y) are increasing functions of y, and
ϕx0(y0 −∆) < ϕx0(y0) = 0 < ϕx0(y0 + ∆).

By XIV.2.5 and XIV.3.4, F is continuous, and hence there is a δ, 0 < δ ≤ δ1,
such that

∀x ∈ U(δ), ϕx(y0 −∆) < 0 < ϕx(y0 + ∆).

Now ϕx is increasing and hence one-to-one. Thus, by IV.3 there is precisely
one y ∈ (y0 −∆, y0 + ∆) such that ϕx(y) = 0 – that is, F (x, y) = 0. Denote
this y by f(x).

Note this f is so far just a function; we know nothing about its properties,
in particular, we do not know whether it is continuous or not.
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II. The first derivatives. Fix an index j, abbreviate the sequence x1, . . . , xj−1
by xb and the the sequence xj+1, . . . , xn by xa; thus, we have

x = (xb, xj, xa).

We will compute ∂f
∂xj

as the derivative of ψ(t) = f(xb, t, xa).

By XIV.5.4.1 we have

0 = F (xb, t+ h, xa, ψ(t+ h))− F (xb, t, xa, ψ(t)) =

= F (xb, t+ h, xa, ψ(t) + (ψ(t+ h)− ψ(t)))− F (xb, t, xa, ψ(t)) =

=
∂F (xb, t+ θh, xa, ψ(t) + θ(ψ(t+ h)− ψ(t)))

∂xj
h

+
∂F (xb, t+ θh, xa, ψ(t) + θ(ψ(t+ h)− ψ(t)))

∂y
(ψ(t+ h)− ψ(t))

and hence

ψ(t+ h)− ψ(t) = −h ·

∂F (xb, t+ θh, xa, ψ(t) + θ(ψ(t+ h)− ψ(t)))

∂xj
∂F (xb, t+ θh, xa, ψ(t) + θ(ψ(t+ h)− ψ(t)))

∂y

(∗∗)

for some θ between 0 and 1.
Now we can infer that f is continuous. From (∗) we obtain

|ψ(t+ h)− ψ(t)| ≤ |h| ·
∣∣∣∣Ka
∣∣∣∣

Using this fact we can compute from (∗∗) further

limh→0
ψ(t+ h)− ψ(t)

h
=

= − limh→0

∂F (xb, t+ θh, xa, ψ(t) + θ(ψ(t+ h)− ψ(t)))

∂xj
∂F (xb, t+ θh, xa, ψ(t) + θ(ψ(t+ h)− ψ(t)))

∂y

= −

∂F (xb, t, xa, ψ(t))

∂xj
∂F (xb, t, xa, ψ(t))

∂y

III. The higher derivatives. Note that we have not only proved the exis-
tence of the first derivative of f , but also the formula

∂f(x)

∂xj
= −∂F (x, f(x))

∂xj
·
(
∂F (x, f(x))

∂y

)−1
. (∗∗∗)
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From this we can inductively compute the higher derivatives of f (using the
standard rules of differentiation) as long as the derivatives

∂rF

∂xr11 · · · ∂xrnn ∂yrn+1

exist and are continuous. �

2.2. We have obtained the formula (∗∗∗) as a by-product of the proof
that f has a derivative (it was useful further on, but this is not the point).
Note that if we knew beforehand that f had one we could deduce (5.2.3)
immediately from the Chain Rule. In effect, we have

0 ≡ F (x, f(x));

taking a derivative of both sides we obtain

0 =
∂Fx, f(x))

∂xj
+
∂Fx, f(x))

∂y
· ∂f(x)

∂xj
.

Differentiating further, we obtain inductively linear equations from which we
can compute the values od all the derivatives guaranteed by the theorem.

2.3. Note. The solution f in 2.1 has as many derivatives as the initial F
– provided F has at least the first ones. One sometimes thinks of the function
itself as of its 0-th derivative. The theorem, however, does not guarantee a
continuous solution f of an equation F (x, f(x)) = 0 with continuous F . We
had to use the first derivatives already for the existence of the f .

3. A warm-up: two equations.

3.1. Consider a pair of equations

F1(x, y1, y2) = 0,

F2(x, y1, y2) = 0

and try to find a solution yi = fi(x), i = 1, 2, in a neighborhood of a point
(x0, y01, y

0
2) (at which the equalities hold). We will apply the “substitution

method” based on Theorem 2.1. First think of the second equation as an
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equation for the y2; in a neighborhood of (x0, y01, y
0
2) we then obtain y2 as a

function ψ(x, y1). Substitute this into the first equation to obtain

G(x, y1) = F1(x, y1, ψ(x, y1));

if we find a solution y1 = f1(x) in a neighborhood of (x0, y01) we can substitute
it into ψ and obtain y2 = f2(x) = ψ(x, f1(x)).

3.2. Now we have a solution let us summarize what exactly we have
assumed:

– First we had to have the continuous partial derivatives of the functions
Fi.

– Then, to be able to obtain ψ by 2.1 the way we did, we needed to have

∂F2

∂y2
(x0, y01, y

0
2) 6= 0. (∗)

– Finally, we also need to have (use the Chain Rule)

0 6= ∂G

∂y1
(x0, x0) =

∂F1

∂y1
+
∂F1

∂y2

∂ψ

∂y1
6= 0. (∗∗)

Use the formula for the first derivative

∂ψ

∂y1
= −

(
∂F1

∂y2

)−1
∂F2

∂y1

from the proof of 2.1 and transform (∗∗) to(
∂F1

∂y2

)−1(
∂F1

∂y1

∂F2

∂y2
− ∂F1

∂y2

∂F2

∂y1

)
6= 0,

that is,
∂F1

∂y1

∂F2

∂y2
− ∂F1

∂y2

∂F2

∂y1
6= 0.

This is a familiar formula, namely that for a determinant. Thus we have in
fact assumed that ∣∣∣∣∣∣∣∣∣

∂F1

∂y1
,
∂F1

∂y2

∂F2

∂y1
,
∂F2

∂y2

∣∣∣∣∣∣∣∣∣ = det

(
∂Fi
∂yj

)
i,j

6= 0.
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And this condition suffices: if we assume that this determinant is non-zero
we have either

∂F2

∂y2
(x0, y01, y

0
2) 6= 0

and/or
∂F2

∂y1
(x0, y01, y

0
2) 6= 0,

so if the latter holds, we can start by solving F2(x, y1, y2) = 0 for y1 instead
of y2.

4. The general system.

4.1. Jacobi determinant. Let F be a sequence of functions

F(x, y) = (F1(x, y1, . . . , ym), . . . , Fm(x, y1, . . . , ym)).

For this F and the sequence y = (y1, . . . , ym) define the Jacobi determinant
(briefly, the Jacobian)

D(F)

D(y)
= det

(
∂Fi
∂yj

)
i,j=1,...,m

Note that if m = 1, that is if we have one function F and one y, we have

D(F )

D(y)
=
∂F

∂y
.

4.2. Theorem. Let Fi(x, y1, . . . , ym), i = 1, . . . ,m, be functions of n+m
variables with continuous partial derivatives up to an order k ≥ 1. Let

F(x0, y0) = o

and let
D(F)

D(y)
(x0, y0) 6= 0.

Then there exist δ > 0 and ∆ > 0 such that for every

x ∈ (x01 − δ, x01 + δ)× · · · × (x0n − δ, x0n + δ)
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there exists precisely one

y ∈ (y01 −∆, y01 + ∆)× · · · × (y0m −∆, x0m + ∆)

such that
F(x, y) = 0.

Furthermore, if we write this y as a vector function f(x) = (f1(x), . . . , fm(x)),
then the functions fi have continuous partial derivatives up to the order k.

Before the proof. The procedure will follow the idea of the substitution
method from Section 3. Only, we will have to do something more with
determinants (but this is linear algebra, well known to the reader) and at
the end we will have to tidy up the ∆ and δ (which we have so far neglected).

Proof will be done by induction. The statement holds for m = 1 (see 2.1).
Now let it hold for m, and let us have a system of equations

Fi(x, y), i = 1, . . . ,m+ 1

satisfying the assumptions (note that the unknown vector y is m+1-dimensi-
onal, too). Then, in particular, in the Jacobian determinant we cannot have
a column consisting entirely of zeros, and hence, after possibly reshufling the
Fi’s, we can assume that

∂Fm+1

∂ym+1

(x0, y0) 6= 0.

Write ỹ = (y1, . . . , ym); then, by the induction hypothesis, we have δ1 > 0
and ∆1 > 0 such that for

(x, ỹ) ∈ (x01 − δ1, x01 + δ1)× · · · × (x0n − δ1, xn1 + δ1)× · · · × (y0m − δ1, y0m + δ1),

there exists precisely one ym+1 = ψ(x, ỹ) satisfying

Fm+1(x, ỹ, ym+1) = 0 and |ym+1 − y0m+1] < ∆1.

This ψ has continuous partial derivatives up to the order k and hence so have
the functions

Gi(x, ỹ) = Fi(x, ỹ, ψ(x, ỹ)), i = 1, . . .m+ 1
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(the last Gm+1 is constant 0). By the Chain Rule we obtain

∂Gj

∂yi
=
∂Fj
∂yi

+
∂Fj
∂ym+1

∂ψ

∂yi
. (∗)

Now consider the determinant

D(F)

D(y)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂y1
, . . . ,

∂F1

∂ym
,

∂F1

∂ym+1

. . . , . . . , . . . , . . .

∂Fm
∂y1

, . . . ,
∂Fm
∂ym

,
∂Fm
∂ym+1

∂Fm+1

∂y1
, . . . ,

∂Fm+1

∂ym
,
∂Fm+1

∂ym+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Multiply the last column by ∂ψ
∂yi

and add it to the ith one. By (∗), taking
into account that Gm+1 ≡ 0 and hence

∂Gm+1

∂yi
=
∂Fm+1

∂yi
+
∂Fm+1

∂ym+1

∂ψ

∂yi
= 0,

we obtain

D(F)

D(y)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂G1

∂y1
, . . . ,

∂G1

∂ym
,

∂F1

∂ym+1

. . . , . . . , . . . , . . .

∂Gm

∂y1
, . . . ,

∂Gm

∂ym
,

∂Fm
∂ym+1

0, . . . , 0,
∂Fm+1

∂ym+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∂Fm+1

∂ym+1

· D(G1, . . . , Gm)

D(y1, . . . , ym)
.

Thus,
D(G1, . . . , Gm)

D(y1, . . . , ym)
6= 0
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and hence by the induction hypthesis there are δ2 > 0, ∆2 > 0 such that for
|xi− x0i | < δ2 there is a uniquely determined ỹ with |yi− y0i | < ∆2 such that

Gi(x, ỹ) = 0 for i = 1, . . . ,m

and that the resulting fi(x) have continuous partial derivatives up to the
order k. Finally defining

fi+1(x) = ψ(x, f1(x), . . . , fm(x))

we obtain a solution f of the original system of equations F(x, y) = 0.
To finish the proof we need the constraints ||x− x0|| < δ and ||y − y0|| < ∆

within which the solution is correct (that is, unique).
Choose 0 < ∆ ≤ δ1,∆1,∆2 and then 0 < δ < δ1, δ2 and sufficiently small

so that for |x1 − x0i | < δ one has |fj(x) − fj(x0)| < ∆ (the last condition
makes sure to have in the ∆-interval at least one solution). Now let

F(x, y) = o, and ||x− x0|| < δ and ||y − y0|| < ∆. (∗∗)

We have to prove that then necessarily yi = fi(x) for all i. Since |xi − x0i | <
δ ≤ δ1 for i = 1, . . . , n, |yi − y0i | < ∆ ≤ δ1 for i = 1, . . . ,m and |ym+1 −
y0m+1| < ∆ ≤ ∆1 we have necessarily ym+1 = ψ(x, ỹ). Thus, by (∗∗),

G(x, ỹ) = o

and since |xi−x0i | < δ ≤ δ2 and |yi−y0i | < ∆ ≤ ∆2 we have indeed yi = fi(x).
�

5. Two simple applications: regular mappings

5.1. Let U ⊆ En be an open set. Let fi, i = 1, . . . , n, be mappings
with continuous partial derivatives (and hence continuous themselves). The
resulting (continuous) mapping f = (f1, . . . , fn) : U → En is said to be
regular if

D(f)

D(x)
(x) 6= 0

for all x ∈ U .

5.2. Recall that continuous mappings are characterized by preserving
openness (or closedness) by preimage (recall XIII.3.7). Also recall the very
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special fact II.7.10) that if the domain is compact, also images of closed sets
are closed. For regular maps we have something similar.

Proposition. If f : U → En is regular then the image f[V ] of every open
V ⊆ U is open.

Proof. Let f(x0) = y0. Define F : V × En → En by setting

Fi(x, y) = fi(x)− yi. (∗)

then F(x0, y0) = o and D(F)
D(x)
6= 0, and hence we can apply 4.2 to obtain δ > 0

and ∆ > 0 such that for every y with ||y − y0|| < δ, there exists a x such
that ||x− x0|| < ∆ and Fi(x, y) = fi(x) − yi = 0. This means that we have
f(x) = y (do not get confused by the reversed roles of the xi and the yi: the
yi are here the independent variables), and

Ω(y0, δ) = {y | ||y − y0|| < δ} ⊆ f[V ]. �

5.3. Proposition. Let f : U → En be a regular mapping. Then for each
x0 ∈ U there exists an open neighborhood V such that the restriction f|V is
one-to-one. Moreover, the mapping g : f [V ]→ En inverse to f|V is regular.

Proof. We will use again the mapping F = (F1, . . . , Fn) from (∗). For a
sufficiently small ∆ > 0 we have precisely one x = g(y) such that F(x, y) = 0
and ||x− x0|| < ∆. This g has, furthermore, continuous partial derivatives.
By XIV.5.3 we have

D(id) = D(f ◦ g) = D(f) ·D(g).

By the Chain Rule (and the theorem on product of determinants)

D(f)

D(x)
· D(g)

D(y)
= detD(f) · detD(g) = 1

and hence for each y ∈ f[V ], D(g)
D(y)

(y) 6= 0. �

5.3.1. Corollary. A one-to-one regular mapping f : U → En has a
regular inverse g : f[U ]→ En.
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6. Local extremes and extremes with constraints.

6.1. Recall looking for local extremes of a real-valued function of one
real variable f in VII.1. If f was defined on an interval 〈a, b〉 and had a
derivative in (a, b) we learned by an easy application of the formula VI.1.5
that in the local extremes the derivative had to be zero. Then it sufficed to
check the values in the boundary points a and b and we had a complete list
of candidates.

Now consider the local extremes of a function of several real variables.
Pinpointing possible local extremes in the interior of its domain is equally
easy: similarly as in the function of one variable we deduce from the total
differential formula (but we really do not even need that, partial derivatives
would suffice) that at the points of local extreme a, we must have

∂f

∂xi
(a) = 0, i = 1, . . . , n. (∗)

But the boundary is now another matter. Typically it does not consist of
finitely many isolated points to be checked one at a time.

6.1.1. Example. Suppose we want to find the local extremes of the
function f(x, y) = x+ 2y on the disc B = {(x, y) |x2 + y2 ≤ 1}. The domain
B is compact, and hence the function f certainly attains a minimum and a
maximum on B. They cannot be in the interior of B: we have constantly,
∂f
∂x

= 1 and ∂f
∂y

= 2; thus, the extremes must be located somewhere in the

infinte set {(x, y) |x2 + y2 = 1}, and the rule (∗) is of no use.

6.2. Hence we will try to find local extremes of a function f(x1, . . . , xn)
subject to certain constraints gi(x1, . . . , xn) = 0, i = 1, . . . , k. We have the
following

Theorem. Let f, g1, . . . , gk be real functions defined in an open set D ⊆
En, and let them have continuous partial derivatives. Suppose that the rank
of the matrix

M =


∂g1
∂x1

, . . . ,
∂g1
∂xn

. . . , . . . , . . .
∂gk
∂x1

, . . . ,
∂gk
∂xn


is the largest possible, that is k, at each point of D.
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If the function f achieves at a point a = (a1, . . . , an) a local extreme
subject to the constraints

gi(x1, . . . , xn) = 0, i = 1, . . . , k

then there exist numbers λ1, . . . , λk such that for each i = 1, . . . , n we have

∂f(a)

∂xi
+

k∑
j=1

λj ·
∂gj(a)

∂xi
= 0.

Notes. 1. The functions f, gi were assumed to be defined in an open D so
that we can take derivatives whenever we need them. In typical applications
one works with functions that can be extended to an open set containing the
area in question.

2. The force of the statement is in asserting the existence of λ1, . . . , λk
that satisfy more than k equations. See the solution of 6.1.1 in 6.3 below.

3. The numbers λi are known as Lagrange multipliers.

Proof. From linear algebra we know that a matrix M has rank k iff at
least one of the k× k submatrices of M is regular (and hence has a non-zero
determinant). Without loss of generality we can assume that at the extremal
point we have ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1
∂x1

, . . . ,
∂g1
∂xk

. . . , . . . , . . .

∂gk
∂x1

, . . . ,
∂gk
∂xk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0. (1)

If this holds, we have by the Implicit Function Theorem in a neighborhood
of the point a functions φi(xk+1, . . . , xn) with continuous partial derivatives
such that (we write x̃ for (xk+1, . . . , xn))

gi(φ1(x̃), . . . , φk(x̃), x̃) = 0 for i = 1, . . . , k,

Thus, a local maximum or a local minimum of f(x) at a, subject to the
given constraints, implies the corresponding extreme property (without con-
straints) of the function

F (x̃) = f(φ1(x̃), . . . , φk(x̃), x̃),
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at ã, and hence by 5.1

∂F (ã)

∂xi
= 0 for i = k + 1, . . . , n,

that is, by the Chain Rule,

k∑
r=1

∂f(a)

∂xr

∂φr(ã)

∂xi
+
∂f(a)

∂xi
for i = k + 1, . . . , n. (2)

Taking derivatives of the constant functions gi(φ1(x̃), . . . , φ(x̃), x̃) = 0 we
obtain for j = 1, . . . , k,

k∑
r=1

∂gj(a)

∂xr

∂φr(ã)

∂xi
+
∂gj(a)

∂xi
for i = k + 1, . . . , n. (3)

Now we will use (1) again, for another purpose. Because of the rank of the
matrix, the system of linear equations

∂f(a)

∂xi
+

n∑
j=1

λj ·
∂gj(a)

∂xi
= 0, i = 1, . . . , k,

has a unique solution λ1, . . . , λk. These are the equalities from the statement,
but so far for i ≤ k only. It remains to be shown that the same equalities
hold also for i > k. In effect, by (2) and (3), for i > k we obtain

∂f(a)

∂xi
+

n∑
j=1

λj ·
∂gj(a)

∂xi
= −

k∑
r=1

∂f(a)

∂xr

∂φr(ã)

∂xi
−

k∑
j=1

λj

k∑
r=1

∂gj(a)

∂xr

∂φr(ã)

∂xi
=

−
n∑
r=1

(
∂f(a)

∂xi
+

n∑
j=1

λj ·
∂gj(a)

∂xi

)
∂φr(ã)

∂xi
= −

n∑
r=1

0 · ∂φr(ã)

∂xi
= 0. �

6.3. Solution of 6.1.1. We have ∂f
∂x

= 1 and ∂f
∂y

= 2, g(x, y) = x2+y2−1

and hence ∂g
∂x

= 2x and ∂g
∂y

= 2y. There is one λ that satisfies two equations

1 + λ · 2x = 0 and 2 + λ · 2y = 0.

This is possible only if y = 2x. Thus, as x2 + y2 = 1 we obtain 5x2 = 1 and
hence x = ± 1√

5
; this localizes the extremes to ( 1√

5
, 2√

5
) and (−1√

5
−2√
5
).
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6.4. The comstraints gi do not necessarily come from describing bound-
aries. Here is an example of another nature.

Let us ask the question which rectangular parallelepiped of a given surface
area has the largest volume. Denoting the lengths of the edges by x1, . . . , xn,
the surface area is

S(x1, . . . , xn) = 2x1 · · · xn
(

1

x1
+ · · ·+ 1

xn

)
and the volume is

V (x1, . . . , xn) = x1 · · ·xn.

Hence
∂V

∂xi
=

1

xi
· x1 · · ·xn and

∂S

∂xi
=

2

xi
(x1 · · ·xn)

(
1

x1
+ · · ·+ 1

xn

)
− 2x1 · · ·xn

1

x2i
.

If we denote yi = 1
xi

and s = y1 + · · ·+ yn, and divide the equation from the
theorem by x1 · · ·xn, we obtain

2yi(s− yi) + λyi = 0 resulting in yi = s+
λ

2
.

Thus, all the xi are equal and the solution is the cube.
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XVI. Multivariable Riemann integral

The idea of Riemann integral in several variables is the same as that in
one variable. The only difference is that we will have n-dimensional intervals
instead of the standard ones, and that the partitions will have to divide such
intervals in all dimensions so that the resulting intervals of the partition will
not be so tidily ordered as the small intervals 〈t0, t1〉,〈t1, t2〉,. . . . But a finite
sum is a finite sum and we will see that the ordering is not important.

What is new is the Fubini theorem (Section 4) allowing to compute mul-
tivariable integrals using integrals of one variable. All what will be done
before that will be modifications of facts from Chapter XI.

1. Intervals and partitions.

1.1. In this chapter, an n-dimensional compact interval is a product

J = 〈a1, b1〉 × · · · × 〈an, bn〉

(such a J is indeed compact, recall XIII.7.6); if there will be no danger of
confusion we will simply speak of an interval. We will also speak of bricks,
in particular when they will be parts of bigger intervals.

A partition of J is a sequence P = (P 1, . . . , P n) of partitions

P j : aj = tj0 < tj1 < · · · < tj,nj−1 < tj,nj = bj, j = 1, . . . n.

The intervals
〈t1,i1 , t1,i1+1〉 × · · · × 〈tn,in , tn,in+1〉

will be called the bricks of P and the set of all the bricks of P will be denoted
by

B(P ).

1.2. The volume of an interval J = 〈a1, b1〉 × · · · × 〈an, bn〉 is the number

vol(J) = (b1 − a1)(b2 − a2) · · · (bn − an).

Since distinct bricks in B(P ) obviously meet in a set of volume 0 (recall
XI.1 applied for not necessaruly planar figures) we have an
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1.2.1. Observation. vol(J) =
∑
{vol(B) |B ∈ B(J)}.

1.3. Mesh of a partition. The diameter of J = 〈a1, b1〉 × · · · × 〈an, bn〉
is

diam(J) = max
i

(bi − ai)

and the mesh of a partition P is

µ(P ) = max{diam(B) |B ∈ B(P )}.

1.4. Refinement. Recall XI.2.2, A partition Q = (Q1, . . . , Qn) refines
a partition P = (P 1, . . . , P n) if every Qj refines P j.

Considering the segments tj,k−1 = t′j,l < t′j,l+1 < · · · < t′j,l+r = tj,k of the
finer partition Q we obtain

1.4.1. Observation. A refinement Q of a partition P induces partitions

QB of the bricks B ∈ B(P )

and we have a disjoint union

B(Q) =
⋃
{B(QB) |B ∈ B(P )}.

1.5. Observation. For any two partitions P,Q of an n-dimensional
compact interval J there is a common refinement.

(Indeed, recall the proof of XI.2.3.2. If P = (P 1, . . . , P n) and Q =
(Q1, . . . , Qn) are partitions of J consider the partition R = (R1, . . . , Rn)
with Rj common refinements of P j and Qj.)

2. Lower and upper sums.

Definition of Riemann integral.

2.1. Let f be a bounded real function on an an n-dimensional compact
interval J and let B ⊆ J be an an n-dimensional compact subinterval of J
(a brick). Set

m(f,B) = inf{f(x) | x ∈ B} and M(f,B) = sup{f(x) | x ∈ B}.

170



We have

2.1.1. Fact. m(f,B) ≤M(f,B) and if C ⊆ B then

m(f, C) ≥ m(f,B) and M(f, C) ≤M(f,B).

({f(x) | x ∈ C} is a subset of {f(x) | x ∈ B} and hence each lower (upper)
bound of the latter is a lower (upper) bound of the former.)

2.2. Let P be a partition of an interval J and let f : J → R be a bounded
function. Set

sJ(f, P ) =
∑
{m(f,B) · vol(B) |B ∈ B(P )} and

SJ(f, P ) =
∑
{M(f,B) · vol(B) |B ∈ B(P )}.

The subscript J will be usually omitted.

2.2.1. Proposition. Let a partition Q refine P . Then

s(f,Q) ≥ s(f, P ) and S(f,Q) ≤ S(f, P ).

Proof. We have (the statement used is indicated on the = or ≤ sign)

S(f,Q) =
∑
{M(f, C) · vol(C) |C ∈ B(Q)} 1.4.1

=

1.4.1
=
∑
{M(f, C) · vol(C) |C ∈ (disjoint)

⋃
{B(QB) |B ∈ B(P )}} =

=
∑
{
∑
{M(f, C) · vol(C) |C ∈ B(QB)} |B ∈ B(P )}

2.1.1

≤
2.1.1

≤
∑
{
∑
{M(f,B) · vol(C) |C ∈ B(QB)} |B ∈ B(P )} =

=
∑
{M(f,B)

∑
{vol(C) |C ∈ B(QB)} |B ∈ B(P )} 1.2.1

=

1.2.1
=
∑
{M(f,B) · vol(B) |B ∈ B(P )} = S(f, P ).

Similarly for s(f,Q). �

2.2.2. Proposition. Let P,Q be partitions of J . We have s(f, P ) ≤
S(f,Q).

Proof. For a common partition R of P,Q (recall 1.5) we have by 2.2.1

s(f, P ) ≤ s(f,R) ≤ S(f,R) ≤ S(fQ).
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2.3. By 2.2.2 the set {s(f, P ) |P a partition} is bounded from above and
we can define the lower Riemann integral of f over J by∫

J

f(x)dx = sup{s(f, P ) |P a partition};

similarly, the set {S(f, P ) |P a partition} is bounded from below and we can
define the upper Riemann integral of f over J by∫

J

f(x)dx = inf{S(f, P ) |P a partition}.

If the lower and upper integrals are equal we call the common value the
Riemann integral of f over J and denote it by∫

J

f(x)dx or simply

∫
J

f

2.3.1. Remark. The integral can be also denoted e.g. by∫
J

f(x1, . . . , xn)dx1, . . . xn

which certainly does not surprise. The reader may encounter also symbols
like ∫

J

f(x1, . . . , xn)dx1dx2 · · · dxn.

This may look peculiar, but it makes more sense than meets the eye. See 4.2
below.

2.4. Obviously we have the simple estimate

inf{f(x) | x ∈ J} · vol(J) ≤
∫

J

f ≤
∫

J

f ≤ sup{f(x) | x ∈ J} · vol(J).
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3. Continuous mappings.

3.1. Proposition. The Riemann integral
∫
J
f(x)dx exists if and only if

for every ε > 0 there is a partition P such that

SJ(f, P )− sJ(f, P ) < ε.

Note instead of a proof. The statement can be proved by repeating
the proof of XI.2.4.2. But the reader may realize that rather than having
here an easy generalization of IX.2.4.2, the statements are both special cases
of a general simple statement on suprema and infima. Suppose you have a
set (X,≤) partially ordered by ≤ such that for any two x, y ∈ X there is a
z ≤ x, y. If we have α : X → R such that x ≤ y implies α(x) ≥ α(y) and
β : X → R such that x ≤ y implies β(x) ≤ β(y), and if α(x) ≤ β(y) for
all x, y then supx α(x) = infx β(x) iff for every ε > 0 there is an x such that
β(x) < α(x) + ε. This is a trivial fact that has nothing to do with sums and
such. But of course the criterion is very useful.

3.2. For the proof of the following theorem we will use again the uniform
continuity of a continuous function on a compact space (now in the more
general version XIII.7.11).

Theorem. For every continuous function f : J → R on an n-dimensional
compact interval the Riemann integral

∫
J
f exists.

Proof. We will use the distance σ in in En defined by

σ(x, y) = max
i
|xi − yi|.

Since f is uniformly continuous we can choose for ε > 0 a δ > 0 such that

σ(x, y) < δ ⇒ |f(x)− f(y)| < ε

vol(J)
.

Recall the mesh µ(P ) from 1.3. If µ(P ) < δ then diam(B) < δ for all
B ∈ B(P ) and hence

M(f,B)−m(f,B) = sup{f(x) | x ∈ B} − inf{f(x) | x ∈ B} ≤

≤ sup{|f(x)− f(y)| | x, y ∈ B} < ε

vol(J)
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so that

S(f, P )− s(f, P ) =
∑
{(M(f,B)−m(f,B)) · vol(B) |B ∈ B(P )} ≤

≤ ε

vol(J)

∑
{vol(B) |B ∈ B(P )} =

ε

volJ
vol(J) = ε

by 1.2.1. Now use 3.1. �

3.2.1. Similarly like in XI.3.2.1 the previous proof yields the following

Theorem. Let f : J → R be a continuous function and let P1, P2, . . . be
a sequence of partitions such that limn µ(Pn) = 0. Then

lim
n
s(f, Pn) = lim

n
S(f, Pn) =

∫
J

f.

(Indeed, with ε and δ as above choose an n0 such that for n ≥ n0 we have
µ(Pn) < δ.)

3.2.2. Corollary. Let f : J → R be a continuous function on an n-
dimensional compact interval J . For every brick B ⊆ J choose an element
xB ∈ B and for a partition P of J define

Σ(f, P ) =
∑
{f(xB) · vol(B) |B ∈ B(P )}.

Let P1, P2, . . . be a sequence of partitions such that limn µ(Pn) = 0. Then

lim
n

Σ(f, Pn) =

∫
J

f.

4. Fubini Theorem.

4.1. Theorem. Consider the product J = J ′ × J ′′ ⊆ Em+n of intervals
J ′ ⊆ Em, J ′′ ⊆ En. Let f : J → R be such that

∫
J
f(x, y)dxy exists and

that for every x ∈ J ′ (resp. every y ∈ J ′′) the integral
∫
J ′′
f(x, y)dy (resp.∫

J ′
f(x, y)dx) exists (this holds in particular for every continuous function).

Then ∫
J

f(x, y)dxy =

∫
J ′

(

∫
J ′′
f(x, y)dy)dx =

∫
J ′′

(

∫
J ′
f(x, y)dx)dy.
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Proof. We will discuss the first equality, the second one is analogous.
Set

F (x) =

∫
J ′′
f(x, y)dy.

We will prove that
∫
J ′
F exists and that∫

J

f =

∫
J ′
F.

Choose a partition P of J such that∫
f − ε ≤ s(f, P ) ≤ S(f, P ) ≤

∫
f + ε.

This partition P is obviously constituted of a partition P ′ of J ′ and a partition
P ′′ of J ′′. We have

B(P ) = {B′ ×B′′ |B′ ∈ B(P ′), B′′ ∈ B(P ′′)},

and each brick of P appears as precisely one B′ ×B′′. By 2.4

F (x) ≤
∑

B′′∈B(P ′′)

max
y∈B′′

f(x, y) · volB′′

and hence

S(F, P ′) ≤
∑

B′∈B(P ′)

max
x∈B′

(
∑

B′′∈B(P ′′)

max
y∈B′′

f(x, y) · vol(B′′)) · vol(B′) ≤

≤
∑

B′∈B(P ′)

∑
B′′∈B(P ′′)

max
(x,y)∈B′×B′′

f(x, y) · vol(B′′) · vol(B′) ≤

≤
∑

B′×B′′∈B(P )

max
z∈B′×B′′

f(z) · vol(B′ ×B′′) = S(f, P ),

and similarly
s(f, P ) ≤ s(F, P ′).

Hence we have∫
j

f − ε ≤ s(F, P ′) ≤
∫

J ′
F ≤ S(F, P ) ≤

∫
J

f + ε
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and therefore
∫
J ′
F is equal to

∫
J
f . �

4.2. Corollary. Let f : J = 〈a1, b1〉× · · ·× 〈an, bn〉 → R be a continuous
function. Then∫

J

f(x)dx =

∫ bn

an

(· · · (
∫ b2

a2

(

∫ b1

a1

f(x1, x2, . . . , xn)dx1)dx2) · · · )dxn.

Note. The notation mentioned in 2.3 comes, of course, from omitting
the brackets.
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3rd semester

XVII. More about metric spaces

1. Separability and countable bases.

1.1. Density. Recall the closure from XIII.3.6. A subset M of a metric
space (X, d) is dense if M = X. In other words, M is dense if for each x ∈ X
and each ε > 0 there is an m ∈M such that d(x,m) < ε.

1.2. Separable spaces. A metric space (X, d) is said to be separable if
there exists a countable dense subset M ⊆ X.

1.3. Bases of open sets. A subset B of the set Open(X, d) of all open
sets in (X, d) is said to be a basis (of open sets) if every open set is a union
of sets from B, that is, if

∀U ∈ Open(X) ∃BU ⊆ B such that U =
⋃
{B |B ∈ BU}.

In other words,

∀U ∈ Open(X) U =
⋃
{B |B ∈ BU , B ⊆ U}.

1.3.1. Notes. 1. Thus the set of all open intervals (a, b), or already the
set of all the (a, b) with rational a, b is a basis (of open sets) of the real line
R.

2. In every metric space the set

{Ω(x,
1

n
) |x ∈ X, n = 1, 2, . . . }

(recall XIII.3.2) is a basis.
3. The term “basis” is in a certain clash with the homonymous term from

linear algebra. There is no minimality or independence in the concept of a
basis of open sets. Rather, we have here a generating set.

1.4. Covers. A cover of a space (X, d) is a subset U ⊆ Open(X, d) such
that

⋃
{U |U ∈ U} = X. A subcover V of a cover U is a subset V ⊆ U such

that (still)
⋃
{U |U ∈ V} = X.
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Note. More precisely we should speak of open covers. But we will not
encounter other covers than covers by open sets.

1.5. Lindelöf property, Lindelöf spaces. A space X = (X, d) is said
to be Lindelöf or to have the Lindelöf property if every cover of X has a
countable subcover.

1.6. Theorem. The following statements about a metric space X are
equivalent.

(1) X is separable.

(2) X has a countable basis.

(3) X has the Lindelöf property.

Proof. (1)⇒(2): Let X be separable and let M be a countable dense
subset. Set

B = {Ω(m, r) |m ∈M, r rational}.

B is obviously countable; we will prove it is a basis.
Let U be open and let x ∈ U . Then there is an ε > 0 such that Ω(x, ε) ⊆

U . Choose an mx ∈ M and a rational rm such that d(x,mx) < 1
3
ε and

1
3
ε < rx <

2
3
ε. Then

x ∈ Ω(mx, rx) ⊆ Ω(x, ε) ⊆ U.

Indeed, x ∈ Ω(mx, rx) trivially and if y ∈ Ω(mx, rx) then d(x, y) ≤ d(x,mx)+
d(mx, y) < 1

3
ε+ 2

3
ε = ε. Thus, U =

⋃
{Ω(mx, rx) |x ∈ U}.

(2)⇒(3): Let B be a countable basis and let U be a cover of X. Since
U =

⋃
{B |B ∈ B, B ⊆ U} for each U ∈ U we have

X =
⋃
{B ∈ B | ∃UB ⊇ B, UB ∈ U}.

The cover A = {B ∈ B | ∃UB ⊇ B, UB ∈ U} is countable and hence so is
also the cover V = {UB |B ∈ A}.

(3)⇒(1): Let X be Lindelöf. For covers

Un = {Ω(x,
1

n
) |x ∈ X}
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choose countable subcovers

Ω(xn1,
1

n
),Ω(xn2,

1

n
), . . . ,Ω(xnk,

1

n
), . . . .

Then {xnk |n = 1, 2, . . . , k = 1, 2, . . . } is dense. �

1.7. Remarks. 1. One often works with spaces that are more general
than the metric ones. In the most stanard ones, the topological spaces, one
gets the information about what are open sets, closed sets, neighbourhoods,
etc., without having them constructed from a previously given distance (of-
ten, in fact, such spaces cannnot be based on a distance at all). All the
concepts above make sense in this generalized context, but their relations
are not necessarily the same. Thus for instance, (2) (the existence of count-
able basis) implies in general both the separability and the Lindelöf property,
but none of the other implications holds generally.

2. Note that, trivially, a countable basis is inherited by every subspace
(recall XIII.3.4.3), so that we also have that (for metric spaces)

� every subspace of a separable space is separable, and

� every subspace of a Lindelöf space is Lindelöf.

In particular the latter statement is somewhat surprising (see Section 3 and
a similar characteristic of compactness that is inherited by closed subspaces
only).

2. Totally bounded metric spaces.

2.1. A metric space (X, d) is totally bounded if

∀ε > 0 ∃ finite M(ε) such that ∀ x ∈ X, d(x,M(ε)) < ε.

Obviously

every totally bounded space is bounded (recall XIII.7.4)

(for any two x, y ∈ X, d(x, y) ≤ max{d(a, b) | a, b ∈M(1)}+2) but not every
bounded space is totally bounded: take an infinite set X with d(x, y) = 1 for
x 6= y).
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2.1.1. Observation. Total boundedness (and the plain boundedness as
well) is preserved when replacing a metric by a strongly equivalent one (recall
XIII.4) but it is not a topological property.

(For the second statement consider the bounded open interval (a, b) and
the real line R; recall XIII.6.8.)

2.2. Proposition. A subspace of a totally bounded (X, d) is totally
bounded.

Proof. Let Y ⊆ X. For ε > 0 take the M( ε
2
) ⊆ X from the definition

and set
MY = {a ∈M(

ε

2
) | ∃y ∈ Y, d(a, y) <

ε

2
}.

Now for each a ∈MY choose an aY ∈ Y such that d(a, aY ) < ε
2

and set

N(ε) = {aY | a ∈MY }.

Then for every y ∈ Y we have d(y,N(ε)) < ε. �

2.3. Proposition. A product X =
∏n

j=1(Xj, dj) of totally bounded
spaces is totally bounded.

Proof. For the product take the distance d from XIII.5. Then, if we
take for Xi the Mi(ε) from the definition, the set M(ε) =

∏
Mi(ε) has the

property needed for X. �

2.4. Proposition. A subspace of En is totally bounded if and only if it
is bounded.

Proof. In view of 2.2. and 2.3 it suffices to prove that the interval 〈a, b〉
is totally bounded. But this is easy: for ε > 0 take an n such that b−a

n
< ε

and set

M(ε) = {a+ k
b− a
n
| k = 0, 1, 2, . . . }.

�

2.5. A characteristics of total boundedness reminiscent of com-
pactness.

2.5.1. Lemma. If (X, d) is not totally bounded then there is a sequence
that contains no Cauchy subsequence.

Proof. If (X, d) is not locally bounded then there is an ε0 > 0 such that
for every finite M ⊆ X there is an xM ∈ X such that d(xM ,M) ≥ ε0. Choose
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x1 arbitrarily and if x1, . . . , xn are already chosen set xn+1 = x{x1,...,xn}. Then
any two elements of the resulting sequence have the distance at least ε0 and
hence there is no Cauchy subsequence. �

2.5.2. Theorem. A metric space X is totally bounded if and only if
every sequence in X contains a Cauchy subsequence.

Proof. Let (xn)n be a sequence in a totally bounded (X, d). Consider the

M(
1

n
) = {yn1, . . . , ynmn}

from the definition. If A = {xn |n = 1, 2, . . . } is finite then (xn)n contains
a constant subsequence. Thus, suppose A is not finite. There is an r1 such
that A1 = A ∩ Ω(y1r1 , 1) is infinite; choose xk1 ∈ A1. If we already have
infinite

A1 ⊇ A2 ⊇ · · · ⊇ As, Aj ⊆ Ω(yjrj ,
1

j
)

and
k1 < · · · < ks such that xkj ∈ Aj

choose rs+1 such that As+1 = As ∩Ω(ys+1,rs+1 ,
1
s+1

) is infinite and an xks+1 ∈
As+1 such that ks+1 > ks. Then the subsequence (xkn)n is Cauchy. �

The converse is in 2.5.1. �

2.6. Theorem. A metric space is compact if and only if it is totally
bounded and complete.

Proof. Let X be compact. Then it is complete by XIII.7.7 and totally
bounded by 2.5.1.

On the other hand let X be totally bounded and let (xn)n be a sequence in
X. Then it contains a Cauchy subsequence, and if it is, moreover, complete,
this subsequence converges. �

2.6.1. Remark. 1. We already know the characteristics of the compact
subspaces of En as the closed bounded ones (XIII.7.6). Realize that it is a
special case of 2.6: a subset of En is complete iff it is closed (see XIII.6.6 and
XIII.6.4), and it is totally bounded iff it is bounded (see 2.4).

2. Note that neither completeness nor total boundedness are topological
properties, while their conjunction is.

2.7. Proposition. Every totally bounded metric space is separable.
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Proof. Take the sets M(ε) from the definition again. The set

∞⋃
n=1

M(
1

n
)

is countable and evidently dense. �

2.7.1. Corollary. Every compact space is separable and hence Lindelöf.

3. Heine-Borel Theorem.

3.1. Accumulation points. A point is an accumulation point of a set
A in a space X if every neighbourhood of x contains infinitely many points
of A. The following is a straightforward but expedient modification of the
definition of compactness by means of convergent subsequences.

Proposition. A metric space X is compact iff every infinite M in X
has an accumulation point.

Proof. Let X be compact and let A be infinite. Choose an arbitrary
sequence x1, x2, . . . , xn, . . . in A such that xi 6= xj for i 6= j. Then every
neighbourhood of a limit x of a subsequence (xkn)n contains infinitely many
xj’s and hence x is an accumulation point of A.

On the other hand let the second statement hold and let (xn)n be a
sequence in X. Then either A = {xn |n = 1, 2, . . . } is finite and then (xn)n
contains a constant subsequence, or A has an accumulation point x. Then we
can proceed as follows. Choose xk1 in A∩Ω(x, 1) and if xk1 , . . . , xkn have been
already chosen pick xkn+1 in A∩Ω(x, 1

n+1
) so that kn+1 > kn (this disqualifies

only finitely many of infinite number of choices); then limn xkn = x. �

3.2. Theorem. (Heine-Borel Theorem)A metric space is compact if and
only if each cover of X contains a finite subcover.

Proof. I. Let X be compact but let there be a cover that has no finite
subcover. By 2.7.1 X is Lindelöf and hence there is a countable cover

U1, U2, , . . . , Un, . . . (∗)

with no finite subcover. Define

V1, V2, , . . . , Vn, . . .
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as follows:

� take for V1 the first non-empty Uk, and

� if V1, V2, , . . . , Vn have been already chosen take for Vn+1 the first Uk
such that Uk *

⋃n
j=1 Vj.This way we have rejected precisely the Uj

that were redundant for covering the space in the order of (∗) (that is,
the sequence (

⋃n
k=1 Vn)n of the already covered parts of X is the same

as (
⋃n
k=1 Un)n, only without repetition).

Hence

(1) {Vn |n = 1, 2, . . . } is a subcover of {Un |n = 1, 2, . . . },

(2) the procedure cannot stop, else we had a finite subcover, and

(3) we can choose xn ∈ Vn r
⋃n−1
k=1 Vk.

Now all the xn are distinct (if k < n then xn ∈ Vn r Vk while xk ∈ Vk) and
hence we have an infinite set

A = {x1, x2, . . . , xn, . . .}

and this set has to have an accumulation point x. Since {Vn |n = 1, 2, . . . }
is a cover, there is an n such that x ∈ Vn. This is a contradiction since Vn
contains none of the xk with k > n and hence Vn ∩ A is not infinite.

II. Let the statement about covers hold and let there be an infinite A
without an accumulation point. That is, no x ∈ X is an accumulation point
of A and hence we have open Ux 3 x such that Ux ∩ A is finite. Choose a
finite subcover

Ux1 , Ux2 , . . . , Uxn

of the cover {Ux |x ∈ X}. Now we have

A = A ∩X = A ∩
n⋃
k=1

Uxk =
n⋃
k=1

(A ∩ Uxk)

which is a contradiction since the rightmost union is finite. �

3.3. Corollary. (Finite Intersection Property) Let A be a system of
closed subsets of a compact space. If

⋂
{A |A ∈ A} = ∅ then there is a finite

A0 ⊆ A such that
⋂
{A |A ∈ A0} = ∅. Consequently, if

A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · ·
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is a decreasing sequence of non-empty closed subsets of X then
⋂∞
n=1An 6= ∅.

Proof. By De Morgan formula, {X r A |A ∈ A} is a cover. �

4. Baire Category Theorem.

4.1. Diameter. Generalizing the diameter from XVI.1.3 we define in a
general metric space (X, d) for a subset A ⊆ X

diam(A) = sup{d(x, y) |x, y ∈ A}

Note that diam(A) can be infinite: in fact diam(X) is finite only if the space
is bounded.

From the triangle inequality we immediately obtain

4.1.1. Observations. 1. diam(Ω(x, ε)) ≤ 2ε, and
2. diam(A) = diam(A).

4.2. Lemma. Let (X, d) be a complete metric space. Let

A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · ·

be a decreasing sequence of non-empty closed subsets of X with limn diam(An)
= 0. Then

∞⋂
n=1

An 6= ∅.

Proof. Choose an ∈ An. Then, by the assumption on diameters, (an)n is
a Cauchy sequence and hence, by completeness, it has a limit a. Now the
subsequence

an, an+1, an+2, . . .

is in the closed An and hence its limit a is in An. As n was arbitrary,
a ∈

⋂∞
n=1An. �

4.2.1. Notes. 1. The assumption on diminishing diameters is essential:
take e.g. the closed An = 〈n,+∞) in the complete R. It may look at the
first sight slightly paradoxical that an intersection of small sets is non-void
but an intersection of large ones is not necessarily so. But the principle is,
hopefully, obvious.

2. The reader may wonder whether it is not, on the other hand, essential
that the diameters in the example above are infinite. In general it is easy to
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give an example with diam(An) = 1, but not in R or, more generally, not in
En: see 3.3. But this has to do with compactness, not with completeness.

3. Needless to say, the intersection in 4.2 consists necessarily of a single
point.

4.3. Lemma. If 0 < ε < η then Ω(x, ε) ⊆ Ω(x, η).
Proof. This is an immediate consequence of the triangle inequality: if

d(y,Ω(x, ε)) = 0 choose a z ∈ Ω(x, ε) with d(y, z) < η − ε; then d(x, y) ≤
d(x, z) + d(z, y) < η. �

4.4. Nowhere dense sets. A subset A of a metric space X is said to

be nowhere dense if X r A is dense, that is, if X r A = X. Note that

A is nowhere dense iff A is nowhere dense.

4.4.1. Reformulation. A ⊆ X is nowhere dense iff for every non-empty
open U the intersection U ∩ (X r A) is non-empty.

(Indeed, this amounts to stating that for every x and every ε > 0 the
intersection Ω(x, ε) ∩ (X r A) is non-empty.)

4.4.2. Proposition. A union of finitely many nowhere dense sets is
nowhere dense.

Proof. It suffices to prove the statement for two sets. Let A,B be nowhere
dense and let U be non-empty open. We have U ∩ (Xr (A ∪B)) = U ∩ (Xr
(A ∪ B) = U ∩ (X r A) ∩ (X r B). Now the open set V = U ∩ (X r A) is
non-empty, and hence V ∩ (X rB)) is non-empty as well. �

4.5. Sets of first category (meagre sets). A countable union of
nowhere dense sets can be already very far from being nowhere dense. Take
for instance the one-point subsets in the space X of all rational numbers:
their union is the whole of X. But in complete spaces such countable unions
can form only very small parts.

A subset of a metric space is said to be a set of first category (or a meagre
set) if it is a countable union

⋃∞
n=1An of nowhere dense sets An.

4.5.1. Theorem. (Baire Category Theorem) No complete metric space
X is of the first category in itself.

Proof. Suppose it is, that is,

X =
∞⋃
n=1

An with X r An dense.
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We can assume all the An closed; hence we have XrAn dense open. Choose
U1 = Ω(x, ε) such that Ω(x, 2ε) ⊆ X r A1 and 2ε < 1. Thus, by 4.1.1 and
4.3

B1 = U1 ⊆ X r A1 and diam(B1) < 1.

Let us have for k ≤ n non-empty open U1, . . . , Un with

Uk−1 ⊇ Bk = Uk for k ≤ n, Bk ⊆ X r Ak, and diam(Bk) <
1

k
. (∗)

Since Un ∩ (X r An+1) is non-empty open we can choose Un+1 = Ω(y, η)
for some y ∈ Un ∩ (X r An+1) and η sufficiently small to have Ω(y, 2η) ⊆
Un∩(XrAn+1) and 2η < 1

n+1
. Then we have, by 4.1.1 and 4.3, the system (∗)

extended from n to n+ 1 and we inductively obtain a sequence of non-empty
closed sets Bn such that

(1) B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ · · · ,

(2) diam(Bn) < 1
n
, and

(3) Bn ⊆ X r An.

By (1),(2) and 4.2, B =
⋂∞
n=1Bn 6= ∅, and by (3)

B ⊆
∞⋂
n=1

(X r An) = X r
∞⋃
n=1

An = X rX = ∅,

a contradiction. �

4.5.2. Note. Realize how small part of a complete space X a set of first
category constitutes. A countable union of such sets is obviously still of first
category, hence it not only smaller than X, but it is in effect so small that
infinitely many disjoint copies cannot cover X.

5. Completion.

5.1. For various reasons, for applying metric spaces in analysis or geom-
etry it is preferable to have the spaces complete. We have already seen the
advantages of the real line R as compared with the rational one, Q. Note
that the extension of the rationals to reals is very satisfactory. We do not
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lose anything of the calculating power, in fact everything is in this respect
only better, and Q is dense in R so that everything to be computed in R can
be well approximated by computing with rationals.

In this section we will show that we can analogously extend every metric
space. That is, for every (X, d) we have a space (X̃, d̃) such that

� (X, d) is dense in (X̃, d̃) (in our construction we will have an isometric

embedding ι : (X, d)→ (X̃, d̃) such that ι[X] is dense in X̃), and

� (X̃, d̃) is complete.

5.2. The construction. The idea of the following construction is very
natural. In the original space there can be Cauchy sequences without limits;
thus, let us add the limits. This will be done by representing the limits by the
so far limitless Cauchy sequences; only, we will have to identify the sequences
that represent the same limit – see the equivalence ∼ below.

Denote by
C(X, d), in short C(X),

the set of all Cauchy sequences in X. For (xn)n, (yn)n ∈ C(X) define

d′((xn)n, (yn)n) = lim
n
d(xn, yn).

5.2.1. Lemma. The limit in the definition of d′ always exists and we
have

(1) d′((xn)n, (xn)n) = 0,

(2) d′((xn)n, (yn)n) = d′((yn)n, (xn)n), and

(3) d′((xn)n, (zn)n) ≤ d′((xn)n, (yn)n) + d′((yn)n, (zn)n).

Proof. The first statement will be proved by showing that the sequence
(d(xn, yn))n is Cauchy in R. Indeed, (xn)n and (yn)n are Cauchy and hence
for an ε > 0 we have an n0 such that for m,n > n0, d(xn, xm) < ε

2
and

d(yn, ym) < ε
2
. Then d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn) < ε +

d(xm, ym), hence d(xn, yn)−d(xm, ym) < ε and by symmetry also d(xm, ym)−
d(xn, yn) < ε, and we conclude that |d(xn, yn)− d(xm, ym)| < ε.
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(1) and (2) are trivial and (3) is very easy: choose k such that

|d′((xn)n, (zn)n)− d(xk, zk)| < ε, |d′((xn)n, (yn)n)− d(xk, yk)| < ε

and |d′((yn)n, (zn)n)− d(yk, zk)| < ε.

Then we obtain from the triangle inequality of d that

d′((xn)n, (zn)n) ≤ d′((xn)n, (yn)n) + d′((yn)n, (zn)n) + 3ε

and since ε > 0 was arbitrary, (3) follows. �

5.2.2. Define an equivalence relation ∼ on C(X) by setting

(xn)n ∼ (yn)n iff d′((xn)n, (yn)n) = 0

(from 5.2.1 it immediately follows that ∼ is an equivalence relation), denote

X̃ = C(X)/ ∼,

and for classes p = [(xn)n] and q = [(yn)n] of this equivalence relation set

d̃(p, q) = d′((xn)n, (yn)n).

5.2.3. Lemma. The value of d̃(p, q) does not depend on the choice of

representatives of p and q, and (X̃, d̃) is a metric space.
Proof. If (xn)n ∼ (x′n)n and (yn)n ∼ (y′n)n we have

d′((xn)n, (yn)n) ≤ d′((xn)n, (x
′
n)n) + d′((x′n)n, (y

′
n)n) + d′((y′n)n, (yn)n) =

= 0 + d′((x′n)n, (y
′
n)n) + 0 = d′((x′n)n, (y

′
n)n)

and by symmetry also d′((x′n)n, (y
′
n)n) ≤ d′((xn)n, (yn)n).

Now by 5.2.1, d̃ satisfies the requirements XIII.2.1(2),(3) and the missing

d̃(p, q) = 0 ⇒ p = q immediately follows from the definition of ∼: if
d(p, q) = d′((xn)n, (yn)n) = 0 then (xn)n ∼ (yn)n and the sequences represent

the same element of X̃. �

5.3. Set
x̃ = (x, x, . . . , x, . . . )

and define a mapping

ι = ι(X,d) : (X, d)→ (X̃, d̃)
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by
ι(x) = [x̃].

We have
d′(x̃, ỹ) = d(x, y)

and hence ι is an isometric embedding.

Theorem. The image of the isometric embedding ι(X,d) is dense in

(X̃, d̃), and the space (X̃, d̃) is complete.

Proof. Take a p = [(xn)n] ∈ X̃ and an ε > 0. Since (xn)n is Cauchy there

is an n0 such that for m, k > n0, d(xm, xk) ≤ ε. But then d̃(ι(xn0), p) =
d′(x̃n0 , (xk)k) ≤ d(xn0 , xk) < ε.

Now let

p1 = [(x1n)n], p2 = [(x2n)n], . . . , pk = [(xkn)n], . . . (∗)

be a Cauchy sequence in (X̃, d̃). For each pn choose, by the already proved

density, an xn ∈ X such that d̃(pn, ι(xn)) < ε. For ε > 0 choose n0 >
3
ε

such

that for m,n ≥ n0, d̃(pm, pn) < ε
3
. Then for m,n ≥ n0,

d(xm, xn) = d̃(ι(xm), ι(xn)) ≤ d̃(ι(xm), pm)+d̃(pm, pn)+d̃(pn, ι(xn)) <
ε

3
+
ε

3
+
ε

3
= ε

and we see that (xn)n is Cauchy. We will prove that the sequence (∗) con-
verges to p = [(xn)n].

We know that d̃(pn, ι(xn)) = limk d(xnk, xn) < 1
n
. Choose n0 >

2
ε

such
that for k, n ≥ n0 we have d(xk, xm) < ε

2
. Then

d(xnk, xk) ≤ d(xnk, xn) + d(xn, xk) <
ε

2
+
ε

2
= ε

and hence d̃(pn, p) = limk d(xnk, xk) ≤ ε. �

5.4. Remark. The question naturally arises whether the completion
extending the rational line Q to the real one, R, can be constructed in the
vein of the procedure just presented. The answer is a cautious YES; one has
to keep in mind that we will have some troubles formulating precisely what we
are doing. The construction above already works with metric spaces and the
distances already have real values. But we can speak of Cauchy sequences,
define equivalence ∼ of Cauchy sequences (but not by means of limits the
existence of which is based on the properties of reals), and obtain the desired.
But many readers would view the usually used method of Dedekind cuts as
somewhat simpler.
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XVIII. Sequences and series of functions

1. Pointwise and uniform convergence.

1.1. Pointwise convergence. Let X = (X, d) and Y = (Y, d′) be
metric spaces and let fn : X → Y be a sequence of continuous mappings. If
for each x ∈ X there is a limn f(x) = f(x) (in Y ) we say that the sequence
(fn)n converges pointwise to the mapping f and usually write

fn → f.

1.1.1. Example. Pointwise convergence does not preserve nice proper-
ties of the functions fn, not even continuity, not to speak of possessing deriva-
tives. Consider the following extremely simple example. Let X = Y = 〈0, 1〉
and let the functions fn be defined by

fn(x) = xn.

Then f(x) = limn fn(x) is 0 for x < 1 while f(1) = 1.

1.2. Uniform convergence. A sequence (fn : (X, d) → (Y, d′))n con-
verges uniformly to f : X → Y if

∀ε > 0 ∃n0 such that ∀x ∈ X (n ≥ n0 ⇒ d′(fn(x), f(x)) < ε).

We speak of a uniformly convergent sequence of mappings and write

fn ⇒ f.

1.3. Theorem. Let fn : X → Y be continuous mappings and let fn ⇒ f .
Then f is continuous.

Proof. Choose x ∈ X and ε > 0. Fix an n such that

∀y ∈ X, d′(fn(y), f(y)) <
ε

3
.

Since fn is continuous there is a δ > 0 such that

d(x, z) < δ ⇒ d′(fn(x), fn(z)) <
ε

3
.
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Hence for d(x, z) < δ,

d′(f(x), f(z)) ≤ d′(f(x), fn(x))+d′(fn(x), fn(z)) + d′(fn(z), f(z)) <

<
ε

3
+
ε

3
+
ε

3
= ε.

�

1.4. Notes. 1. The adjective “uniform” refers, similarly as in “uniform
continuity”, to the indpendence of the property in question on the location
in the domain space. One might for a moment expect that, similarly as in
the uniform continuity, we will obtain something for free in case of a compact
domain. But it is not so: the sequence in the example 1.1.1 has a very simple
compact domain and range and it is not uniformly convergent.

2. Theorem 1.3 holds for uniform continuity as well, that is, we have that

if fn : X → Y are uniformly continuous mappings and fn ⇒ f . then f
is uniformly continuous.

To prove this it suffices to adapt the proof of 1.3 by not fixing the x at the
start. The reader may write down the details as a simple exercise.

1.5. We say that a sequence (fn)n converges to f locally uniformly if for
every x ∈ X there exists a neighbourhood U such that fn|U ⇒ f |U for the
restictions on U . Since the continuity at a point is a local property (that is,
f is continuous in x iff f |U is continuous in x for a neighbourhood U of x)
we immediately obtain from 1.3

1.5.1 Corollary. Let fn : X → Y be continuous mappings and let the
sequence fn converge to f locally uniformly. Then f is continuous.

2. More about uniform convergence:
derivatives, Riemann integral.

2.1. Example. Alhough uniform convergence preserves continuity, it
does not preserve smoothness (existence of derivatives). Consider the func-
tions

fn : 〈−1, 1〉 → 〈0, 1〉 defined by fn(x) =

√
(1− 1

n
)x2 +

1

n
.
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These smooth functions uniformly converge to f(x) = |x| which has no
derivative in x = 0: we have∣∣∣∣∣

√
(1− 1

n
)x2 +

1

n
− |x|

∣∣∣∣∣ =
1
n
(1− x2)∣∣∣√(1− 1
n
)x2 + 1

n
+ |x|

∣∣∣ ≤
√

1

n
.

However, smoothness is preserved if the uniform convergence concerns the
derivatives.

2.2. Theorem. Let fn be continuous real functions defined on an open
interval J and let them have continuous derivatives f ′n. Let fn → f and
f ′n ⇒ g on J . Then f has a derivative on J and f ′ = g.

Proof. We have

A(h) =

∣∣∣∣f(x+ h)− f(x)

h
− g(x)

∣∣∣∣ =

=

∣∣∣∣f(x+ h)− fn(x+ h)

h
− f(x)− fn(x)

h
+
fn(x+ h)− fn(x)

h
− g(x)

∣∣∣∣
and since by Lagrange theorem, fn(x+h)−fn(x)

h
= f ′n(x + θh) for some θ with

0 < θ < 1, we further obtain

A(h) =

∣∣∣∣f(x+ h)− fn(x+ h)

h
− f(x)− fn(x)

h
+ f ′n(x+ θh)−

− g(x+ θh) + g(x+ θh)− g(x)

∣∣∣∣ ≤
≤ 1

|h|
|f(x+ h)− fn(x+ h)|+ 1

|h|
|f(x)− fn(x)|+

+ |f ′n(x+ θh)− g(x+ θh)|+ |g(x+ θh)− g(x)|.

Since f ′n ⇒ g, the function g is continuous by 1.3. Choose δ > 0 such that
for |x − y| < δ we have |g(x) − g(y)| < ε; thus if |h| < δ the last summand
is smaller than ε.

Now fix an h with |h| < δ and choose an n sufficiently large so that

|f ′n(y)− g(y)| < ε,

|f(x+ h)− fn(x+ h)| < ε|h|, and

|f(x)− fn(x)| < ε|h|
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(note that for the first we have to use the uniform convergence – we do not
know precisely where y = x + θh is; not so in the other two inequalities,
where one uses just convergence in two fixed arguments x and x+ h). Then
we obtain

A(h) =

∣∣∣∣f(x+ h)− f(x)

h
− g(x)

∣∣∣∣ < 4ε

and the statement follows. �

2.3. Integral of a limit of functions. For Riemann integral we do not
generally have

∫ b
a

limn fn = limn

∫ b
a
fn, even if all the

∫ b
a
fn exist and all the

functions fn are bounded by the same constant. Here is an example.
Order all the rational numbers between 0 and 1 in a sequence

r1, r2, . . . , rn, . . . .

Set

fn(x) =

{
1 if x = rk with k ≤ n,

0 otherwise.

Then obviously
∫ 1

0
fn = 0 for every n. But the limit f of the sequence fn

is the well-known Dirichlet function for which (obviously again) the lower
integral is 0 and the upper integral is 1.

For uniform convergence we have, however

2.3.1. Theorem. Let fn ⇒ f on 〈a, b〉 and let the Riemann integrals∫ b
a
fn exist. Then also

∫ b
a
f exists and we have∫ b

a

f = lim
n

∫ b

a

fn.

Proof. For ε > 0 choose an n0 such that for n ≥ n0,

|fn(x)− f(x)| < ε

b− a
(∗)

for all x ∈ 〈a, b〉. Recall the notation from XI.2. For a partition P : a = t0 <
t1 < · · · < tn−1 < tn = b (which will be further specified) consider

mj = inf{f(x) | tj−1 ≤ x ≤ tj}, Mj = sup{f(x) | tj−1 ≤ x ≤ tj} and

mn
j = inf{fn(x) | tj−1 ≤ x ≤ tj}, Mn

j = sup{fn(x) | tj−1 ≤ x ≤ tj}.
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By (∗) we have for n, k ≥ n0

|mj −mn
j |, |Mj −Mn

j | ≤
ε

b− a
and hence also |Mk

j −Mn
j | ≤

2ε

b− a

and we obtain for the lower sums

|s(f, P )− s(fn, P )| =
∣∣∣∑(mi −mn

i )(ti − ti−1)
∣∣∣ ≤

≤
∑
|mi −mn

i |(ti − ti−1) ≤ ε

and similarly for the upper sums

|S(f, P )− S(fn, P )| ≤ ε and |S(fk, P )− S(fn, P )| ≤ 2ε.

Now, first take a P such that |
∫
fn−S(fn, P )| < ε and |

∫
fk−S(fk, P )| < ε;

then we infer from the triangle inequality that |
∫
fk −

∫
fn| < 4ε and see

that (
∫
fn)n is a Cauchy sequence. Hence there exists a limit L = limn

∫
fn.

Choose n ≥ n0 sufficiently large to have |
∫
fn − L| < ε.

Now if the partition P is chosen to have

S(fn, P )− ε <
∫
fn < s(fn, P ) + ε

we obtain

L− 3ε ≤
∫
fn − 2ε < s(fn, P )− ε ≤ s(f, P ) ≤

≤ S(f, P ) ≤ S(fn, P ) + ε ≤
∫
fn + 2ε ≤ L+ 3ε

and since ε > 0 was arbitrary we conclude that L =
∫
f =

∫
f . �

2.3.2. Note. The example in 2.3 where the Riemann integrable func-
tions pointwise converged to the Dirichlet function suggested that the trouble
might be rather in the not-integrable limit function then in the value of the
integral being different from the limit. This is only partly true. Indeed, if
we take the more powerful Lebesgue integral (roughly speaking, based on
the idea of sums of countable disjoint systems, while our Riemann integral is
based on finite disjoint systems) the integral of the Dirichlet function is 0 (as
the intuition suggests: the part of the interval in which the function is not 0
is infinitelly smaller than the one with values 0).
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But whatever the strength of the integral might be, the formula∫ b

a

lim
n
fn = lim

n

∫ b

a

fn

cannot hold generally. Consider the functions fn, gn : 〈−1, 1〉 → R ∪ {+∞}
defined by setting

fn(x) =


0 for x ≤ − 1

n
and x ≥ 1

n
,

n+ n2x for − 1
n
≤ x ≤ 0,

n− n2x for 0 ≤ x ≤ 1
n
,

gn(x) =

{
0 for x 6= 0,

n for x = 0

(draw a picture of fn). Then for each n,
∫ b
a
fn = 1 and

∫ b
a
gn = 0 while

limn fn = limn gn.
In actual fact, for Lebesgue integral the formula

∫ b
a

limn fn = limn

∫ b
a
fn

holds for instance if the limit is monotone or if the functions are equally
bounded by an integrable function. Thus, in the example above the formula∫ b
a

limn gn = limn

∫ b
a
gn is correct, the one with fn is not.

2.4. Lemma. Let limn→∞ g(xn) = A for each sequence (xn)n such that
limn xn = a. Then limx→a g(x) = A.

Proof. Suppose limx→a g(x) does not exist or is not equal to A. Then there
is an ε > 0 such that for every δ > 0 there is an x(δ), with 0 < |a−x(δ)| < δ
and |A− g(x(δ))| ≥ ε. Set xn = x( 1

n
). Then limn xn = a while limn→∞ g(xn)

is not A. �

2.4.1. Proposition. Let f : 〈a, b〉×〈c, d〉 → R be a continuous function.
Then

lim
y→y0

∫ b

a

f(x, y)dx =

∫ b

a

f(x, y0)dx.

Proof. Since 〈a, b〉 × 〈c, d〉 is compact, f is uniformly continuous. Thus,
for every ε > 0 there is a δ > 0 such that max{|x1−x2|, |y1−y2|} < δ implies
|f(x1, y1)− f(x2, y2)| < ε.

Let limn yn = y0. Set g(x) = f(x, y0) and gn(x) = f(x, yn). If |yn−y0| < δ
as above, we have |gn(x) − g(x)| < ε independently of x, hence gn ⇒ g

so that by 2.3, limn

∫ b
a
gn(x)dx =

∫ b
a
g(x)dx, that is, limn

∫ b
a
f(x, yn)dx =∫ b

a
f(x, y0)dx, and the statement follows from Lemma 2.4. �
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2.4.2. Proposition. Let f : 〈a, b〉 × 〈c, d〉 → R be continuous and

let it have a continuous partial derivative ∂f(x,y)
∂y

in 〈a, b〉 × (c, d). Then

F (y) =
∫ b
a
f(x, y)dx has a derivative in (c, d) and we have

d

dy

∫ b

a

f(x, y)dx =

∫ b

a

∂f(x, y)

∂y
dx.

Proof. Fix y ∈ (c, d) and choose an α > 0 such that c < y−α < y+α < d.

Set F (y) =
∫ b
a
f(x, y)dx and define

g(x, t) =

{
1
t
(f(x, y + t)− f(x, y)) for t 6= 0,
∂f(x,y)
∂y

for t = 0.

This function g is continuous on the compact 〈a, b〉 × 〈−α,+α〉. This is
obvious in the points (x, t) with t 6= 0, and since by Lagrange theorem

g(x, t)−g(x, 0) =
1

t
(f(x, y+t)−f(x, y))−∂f(x, y)

∂y
=
∂f(x, y + θt)

∂y
−∂f(x, y)

∂y
,

the continuity in (x, 0) follows from the continuity of the partial derivative.
Hence we can apply 2.4.1 to obtain

lim
t→0

∫ b

a

g(x, t)dx =

∫ b

a

∂f(x, y)

∂y
dx.

and since for t 6= 0∫ b

a

g(x, t) =
1

t

(∫ b

a

f(x, y + t)−
∫ b

a

f(x, y)

)
=

1

t
(F (y + t)− F (y))

the statement follows. �

3. The space of continuous functions.

3.1. Let X = (X, d) be a metric space. Denote by

C(X)

the set of all bounded continuous real functions endowed by the metric

d(f, g) = sup{|f(x)− g(x)| |x ∈ X}
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(checking that thus defined d is indeed a metric is straightforward).

3.1.1. Note. There is no harm in allowing infinite distances; in effect,
it has advantages. However, we have worked so far with finite distances and
we will keep doing so. This is why we assume our functions bounded. But

� most of what we will do in this section holds without the boundedness,
and

� if X is compact we have the functions bounded anyway.

3.2. Proposition. A sequence (fn)n converges to f in C(X) if and only
if fn ⇒ f .

Proof. We have limn fn = fn in C(X) if for every ε > 0 there is an n0

such that d(fn, f) = sup{|fn(x) − f(x)| |x ∈ X} ≤ ε for n ≥ n0. This is to
say that for every ε > 0 there is an n0 such that for all n ≥ n0 and for all
x ∈ X it holds that |fn(x) − f(x)| ≤ ε, which is the definition of uniform
convergence. �

3.3. Observation. Let a be a real number. Then the function g : R→ R
defined by g(x) = |a− x| is continuous.

(Indeed, we have |a−y| ≤ |a−x|+ |x−y|, hence |a−y|−|a−x| ≤ |x−y|
and by symmetry ||a− y| − |a− x|| ≤ |x− y|.)

3.3.1. Theorem. C(X) is a complete metric space.
Proof. Let (fn)n be a Cauchy sequence in C(X). Thus, for every ε > 0

there is an n0 such that

∀m,n ≥ n0, ∀x ∈ X |fm(x)− fn(x)| < ε. (∗)

Thus in particular each of the sequences (fn(x))n is Cauchy in R and we have
a limit f(x) = limn fn(x).

Fix an m ≥ n0. Taking a limit in (∗) and using Observation 3.3 we obtain

∀m ≥ n0, |fm(x)− lim
n
fn(x)| = |fm(x)− f(x)| ≤ ε,

independently on x.
Thus fn ⇒ f and hence

� by 1.3, f is continuous; it is also bounded since if we fix an m ≥ n0

obviously |f(x)| ≤ |fm(x)| + ε (and fm is bounded) and hence f ∈
C(X),
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� and, by 3.2, limn fn = f in C(X).

�

4. Series of continuous functions.

4.1. Series of continuous functions

∞∑
n=0

fn(x) = f0(x) + f1(x) + · · ·+ fn(x) + · · ·

are treated as limits

lim
n

n∑
k=0

fk(x)

of the partial finite sums. However, as with series of numbers, for obvious
reasons, the really important ones are the absolutely convergent series of
functions, namely those for which

∑∞
n=0 fn(x) is absolutely convergent for

each x in the domain. In particular (recall III.2.4)

if
∑∞

n=0 fn(x) is absolutely convergent then the sum does not depend on
the order of the summands.

4.2. A series
∑∞

n=0 fn(x) is said to coverge uniformly (resp. converge
locally uniformly) if

(
n∑
k=0

fk(x))n

is a uniformly convergent (resp. locally uniformly convergent) sequence of
functions.

In the first case we will sometimes use the symbol

∞∑
n=0

fn(x) ⇒ f(x) or f0(x) + f1(x) + · · ·+ fn(x) + · · ·⇒ f(x).

From 1.3 we immediately obtain

4.3. Proposition. Let
∑∞

n=0 fn(x) be a uniformly convergent series of
functions. Then the sum is continuous.
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From 2.2 we obtain, using the fact that the derivative of finite sums are
sums of derivatives,

4.4. Proposition. Let the series
∑∞

n=0 fn(x) converge to f(x), let the
functions fn(x) have derivatives f ′n(x) and let the series

∑∞
n=0 f

′
n(x) uni-

formly converge. Then f(x) has a derivative(
∞∑
n=0

fn(x)

)′
=
∞∑
n=0

f ′n(x).

4.5. The following extension of the criterion III.2.2 will be very useful.

Theorem. Let bn ≥ 0 and let
∑∞

n=0 bn converge. Let fn(x) be real func-
tions on a domain D such that |fn(x)| ≤ bn for all x ∈ D. Then

∑∞
n=0 fn(x)

converges on D absolutely and uniformly.
Proof. The absolute convergence is in the definition. Now let ε > 0.

The sequence (
∑n

k=0 bk)n is Cauchy and hence there is an n0 such that for
m,n+ 1 ≥ n0,

∑m
n bk < ε. Then we have for x ∈ D∣∣∣∣∣

m∑
n+1

fk(x)

∣∣∣∣∣ ≤
m∑
n+1

|fk(x)| ≤
m∑
n+1

bk < ε

and hence in C(D)

d(
m∑
k=0

fk,
n∑
k=0

fk) = sup{

∣∣∣∣∣
m∑
n+1

fk(x)

∣∣∣∣∣ |x ∈ D} ≤ ε.

Thus, the sequence (
∑n

k=0 fk)n is Cauchy in C(D) and by 3.2 (and the defi-
nition 2.2)

∑∞
k=0 fk(x) uniformly converges. �

4.5.1. Corollary. Let f(x) =
∑∞

n=0 fn(x) converge and let fn(x) have
derivatives. Let there be a convergent series

∑∞
n=0 bn such that |f ′n(x)| ≤ bn

for all n and x. Then the derivative of f exists and we have(
∞∑
n=0

fn(x)

)′
=
∞∑
n=0

f ′n(x).
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XIX. Power series

1. Limes superior.

1.1. We will allow infinite limits of sequenced of real numbers, that is,

lim
n
an = +∞ if ∀K ∃n0 (n ≥ n0 ⇒ an ≥ K),

lim
n
an = −∞ if ∀K ∃n0 (n ≥ n0 ⇒ an ≤ K),

and infinite suprema for M ⊆ R,

supM = +∞ if M has no finite upper bound.

We will set

(+∞) · a = a · (+∞) = +∞ for positive a, and

(+∞) + a = a+ (+∞) = +∞ for finite a.

1.2. For a sequence (an)n of real numbers define limes superior as the
number

lim sup
n

an = lim
n

sup
k≥n

ak = inf
n

sup
k≥n

ak.

The second equality is obvious: the sequence (supk≥n ak)n is a non-increasing
one.

Limes superior is defined for an arbitrary sequence. Furthermore we have

1.2.1. Observation. If limn an exists then lim supn an = limn an.
(If limn an = −∞ then (supk≥n ak)n has no lower bound and if limn an =

+∞ then supk≥n ak = +∞ for all n. Let a = limn an be finite and let ε > 0.
Then |an − a| < ε implies that | supk≥n ak − a| ≤ ε.)

1.3. Proposition. Suppose an, bn ≥ 0; set a = lim supn an. Let there
exist a finite and positive b = limn bn. Then

lim sup
n

anbn = ab.

Proof. I. For an ε > 0 choose an n0 such that

n ≥ n0 ⇒ bn < b+ ε and sup
k≥n

ak ≤ a+ ε.
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Then we have for n ≥ n0

sup
k≥n

akbk ≤ (sup
k≥n

ak)(b+ ε) ≤ (a+ ε)(b+ ε) = ab+ ε(a+ b+ ε)

and as ε > 0 was arbitrary, we see that lim supn anbn ≤ ab (this also includes
the case of a = +∞ where, of course, the estimate is trivial).

II. For ε > 0 sufficiently small to have b− ε > 0 choose an n0 such that

n ≥ n0 ⇒ bn > b− ε.

Since supk≥n ak ≥ infm supk≥m ak = a for every n, there exist k(n) ≥ n such
that

ak(n) ≥ a− ε if a is finite, and

ak(n) ≥ n if a = +∞.

Then for n ≥ n0,

(a− ε)(b− ε) ≤ ak(n)bk(n) resp. n(b− ε) ≤ ak(n)bk(n) if a = +∞

so that

ab− ε(a+ b− ε) ≤ sup
m
ambm resp. n(b− ε) ≤ sup

m
ambm if a = +∞

and since ε > 0 was arbitrary and since n(b− ε) is arbitrarily large, we also
have ab ≤ lim supn anbn. �

1.4. Note. There is a counterpart of the limes superior called limes
inferior defined for an arbitrary sequence (an)n of real numbers by setting

lim inf
n

an = lim
n

inf
k≥n

ak = sup
n

inf
k≥n

ak.

Its properties are quite analogous.

2. Power series and the radius of convergence.

Until Chapter XXI we will not systematically treat complex functions
of complex variable, but in this section it will be of advantage to consider
the coefficients an, c and the variable x complex. This is not only because
the proof of the theorem on the radius of convergence is literally the same;
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what is at the moment perhaps more important, it will explain the seemingly
paradoxical behaviour of some real power series (see 2.4 below).

2.1. Let an and c be complex numbers. A power series with coefficients
an and center c is the series

∞∑
n=0

an(x− c)n.

In this section it will be understood as a function of a complex variable x;
the domain will be specified shortly.

2.2. The radius of convergence of a power series
∑∞

n=0 an(x − c)n is the
number

ρ = ρ((an)n) =
1

lim supn
n
√
|an|

.

2.3.1. Theorem. Let ρ = ρ((an)n) be the radius of convergence of∑∞
n=0 an(x − c)n and let r < ρ. Then the series

∑∞
n=0 an(x − c)n converges

uniformly and absolutely in the set {x | |x− c| ≤ r}.
On the other hand, the series does not converge if |x− c| > ρ.
Proof. I. For a fixed r < ρ choose a q such that

r · inf
n

sup
k≥n

k
√
|ak| < q < 1.

Then there is an n such that for all k ≥ n,

r · sup
k≥n

k
√
|ak| < q and hence r · k

√
|ak| < q.

For a sufficiently large K ≥ 1 we have, moreover, rk · |ak| < Kqk for all k ≤ n
so that

if |x− c| ≤ r then |ak(x− c)k| ≤ Kqk for all k

and we see by XVIII.3.5 that
∑∞

n=0 an(x − c)n converges uniformly and ab-
solutely in {x | |x− c| ≤ r}.

II. If |x − c| > ρ then |x − c| · infn supk≥n
k
√
|ak| > 1 and hence we have

|x − c| · supk≥n
k
√
|ak| > 1 for all n. Consequently, for each n there is a

k(n) ≥ n such that |x− c| · k(n)
√
|ak(n)| > 1 and hence |ak(n)(x− c)k(n)| > 1 so

that the summands of the series do not even converge to zero. �
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From 2.3.1 and XVIII.1.5 we obtain

2.3.2. Corollary. A power series
∑∞

n=0 an(x − c)n locally uniformly
converges on the open disc D = {x | |x− c| < ρ((an)n)} and converges in no
x with |x − c| > ρ. Consequently, the function f(x) =

∑∞
n=0 an(x − c)n is

continuous on D.

2.4. Notes. 1. Theorem 2.3.1 is in introductory texts of real analysis
often interpreted as a a statement about a real power series and its conver-
gence on the interval (c− ρ, c+ ρ). The proofs in the real context and in the
complex one (as we have interpreted it) are literally the same (although of
course the triangle inequality for the absolute value of a complex number is
a much deeper fact than the triangle inequality in R).

2. The domain D of convergence of a power series is bounded by the open
and closed discs

{x | |x− c| < ρ} ⊆ D ⊆ {x | |x− c| ≤ ρ}

in the complex plane and cannot expand beyond the closed one. This explains
the seemingly paradoxical behaviour of the convergence on the real line. Take
for instance the real function

f(x) =
1

1 + x2
.

In the interval (−1, 1) it can be written as the power series

1− x2 + x4 − x6 + x8 − · · ·

which abruptly stops converging after +1 (and for x < −1). There is no
obvious reason: if we think just in real terms, f(x) gets just smaller after
the bounds. But in the complex plane the discs {x | |x| < r} as domains of
f(x) have to stop expanding after reaching r = 1: there are obstacles in the
points i and −i although there is none on the real line.

3. Theorem 2.3.1 speaks about the convergence in the points of {x | |x| <
ρ} and the divergence for |x| > ρ. For the points of the circle C = {x | |x| =
ρ} there is no general rule.

2.5. Proposition. The radius of convergence of the series
∑∞

n=1 nan(x−
c)n−1 is the same as the radius of convergence of the series

∑∞
n=0 an(x− c)n.
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Proof. For x 6= 0 the series S =
∑∞

n=1 nan(x− c)n−1 obviously converges
iff the series S1 =

∑∞
n= nan(x − c)n = x(

∑∞
n=1 nan(x − c)n−1) does. By 1.3

we have

lim sup
n

n
√
n|an| = lim sup

n

n
√
n n
√
|an| = lim

n

n
√
n·lim sup

n

n
√
|an| = lim sup

n

n
√
|an|

since limn
n
√
n = limn e

1
n
lgn = e0 = 1. Consequently, the radius of conver-

gence of S1, and hence of S, is equal to ρ((an)n). �

2.5.1. By XVIII.3.5.1 we now obtain

Theorem. The series f(x) =
∑∞

n=0 an(x− c)n has a derivative

f ′(x) =
∞∑
n=1

nan(x− c)n−1

and also a primitive function

(

∫
f)(x) = C +

∞∑
n=0

an
n+ 1

(x− c)n+1

in the whole interval J = (c− ρ, c+ ρ) where ρ = ρ((an)n).
In other words, power series can be differentiated and integrated by indi-

vidual summands.

3. Taylor series.

3.1. Recall VIII.7.3. Let a function f have derivatives f (n) of all orders
in an interval J = (c−∆, c+ ∆). Then we have for each n and x ∈ J ,

f(x) =
n∑
k=0

f (k)(c)

k!
(x− c)k +Rn(f, x)

with Rn(f, x) = f (n+1)(ξ)
(n+1)!

(x− c)n+1 where ξ is a number between c and x.

3.1.1. Proposition and definition. Let a function f have derivatives
f (n) of all orders in an interval J = (c − ∆, c + ∆). Let us have for the

remainder Rn(f, x) = f(x)−
∑n

k=0
f (k)(c)
k!

(x− c)k

lim
n
Rn(f, x) = 0 for all x ∈ J.
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Then the function f(x) can be expressed in J as the power series

∞∑
n=0

f (n)(c)

n!
(x− c)n.

This power series is called the Taylor series of f .
Proof. We have

lim
n

n∑
k=0

f (k)(c)

k!
(x− c)k = lim

n
(f(x)−Rn(f, x) = f(x)− lim

n
Rn(f, x) = f(x).

�

3.2. Examples. 1. For an arbitrary large K we have

lim
n

Kn

n!
= 0

(indeed, if we put kn = Kn

n!
then for n > 2K, kn+1 <

kn
2

and hence kn+m <
2−mkn). Consequently for any x the remainder in the Taylor formula VIII.7.3
for ex, sin x and cos x converges to zero and we have the Taylor series

ex = 1 +
x

1!
+
x2

2!
+ · · ·+ xn

n!
+ · · · ,

sinx =
x

1!
− x3

3!
+
x5

5!
− · · · ± x2n+1

(2n+ 1)!
∓ · · · , and

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · ± x2n+2

(2n+ 2)!
∓ · · ·

all of them with the radius of convergence equal to +∞.

2. Just the existence of derivatives of all orders does not suffice: the
remainder does not automatically converge to zero. Consider the example
from VIII.7.4,

f(x) =

{
e−

1
x2 for x 6= 0,

0 for x = 0

wheref (k)(0) = 0 for all k.
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3.3. Let f(x) =
∑∞

n=0 an(x − c)n be a power series with the radius of
convergence ρ. Then we have by 2.5.1

f (k)(x) =
∞∑
n=k

n(n− 1) · · · (n− k + 1)an(x− c)n−k =

= k!ak +
∞∑

n=k+1

n(n− 1) · · · (n− k + 1)an(x− c)n−k.
(∗)

3.3.1. Proposition. 1. The coefficients of a power series f(x) =∑∞
n=0 an(x− c)n are uniquely determined by the function f .
2. A power series is its own Taylor series.

Proof. 1. By (∗) we have ak = f (k)(x)
k!

.
2. If the series f(x) =

∑∞
n=0 an(x− c)n converges we have

f(x) =
k∑

n=0

an(x− c)n +
∞∑

n=k+1

an(x− c)n

and the remainder Rk(f, x) =
∑∞

n=k+1 an(x−c)n converges to zero because of
the convergence of the series

∑∞
n=0 an(x− c)n. Moreover, as we have already

observed, we have ak = f (k)(x)
k!

. �

3.4. It is not always easy to obtain general formula for the coefficients
f (n)(c)
n!

of the Taylor series of a function f by taking derivatives. Sometimes,
however, we can determine the Taylor series very easily using Proposition
3.3.1 and Theorem 2.5.1.

3.4.1. Example: logarithm. We have (lg(1− x))′ = 1
x−1 . Since

1

x− 1
= −1− x− x2 − x3 − · · ·

we have by 2.5.1 (and 3.3.1)

lg(1− x) = C − x− 1

2
x2 − 1

3
x3 − 1

4
x4 − · · ·

and since lg 1 = lg(1 − 0) = 0 we have C = 0 and obtain the well known
formula lg(1− x) = −

∑∞
n=1

xn

n
.
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3.4.2. Example: arcustangens. We have arctan(x)′ = 1
1+x2

. Since

1

1 + x2
= 1− x2 + x4 − x6 + x8 − · · ·

we obtain by taking the primitive function

arctan(x) = x− 1

3
x3 +

1

5
x5 − 1

7
x7 +

1

9
x9 − · · · (∗)

The additive constant is 0, because arctan(0) = 0.

3.4.3. A not very effective but elegant formula for π. The formula
(∗) suggest that

π

4
= arctan(1) = 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · .

This equation really holds true, but it is not quite immediate. Why: the
radius of convergence of the power series f(x) = x− 1

3
x3+ 1

5
x5− 1

7
x7+ 1

9
x9−· · ·

is 1 so that the argument 1 is on the border of the disc of convergence
{x | |x| < 1} about which the general propositions do not say anything (recall
2.4). The function arctan is continuous and for |x| < 1 we have arctan(x) =
f(x). Hence we have to prove that

lim
x→1−

f(x) = 1− 1

3
+

1

5
− 1

7
+

1

9
− · · · .

Consider ε > 0. The series 1 − 1
3

+ 1
5
− 1

7
+ 1

9
− · · · converges (albeit not

absolutely) and hence there is an n such that |Pn| < ε for Pn = 1
2n+1

−
1

2n+3
+ 1

2n+5
− · · · . Now choose a δ > 0 such that for 1− δ < x < 1 and for

Pn(x) = 1
2n+1

x2n+1 − 1
2n+3

x2n+3 + 1
2n+5

x2n+5 − · · · we have

|Pn(x)| < ε and

|(x− 1

3
x3 +

1

5
x5 − · · · ± 1

2n− 1
x2n−1)− (1− 1

3
+

1

5
− · · · ± 1

2n− 1
)| < ε.

Now we can estimate for 1− δ < x < 1 the difference between f(x) and the
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alternating sequence 1− 1
3

+ 1
5
− 1

7
+ 1

9
− · · · :

|f(x)− (1− 1

3
+

1

5
− 1

7
+

1

9
− · · · )| =

|(x− 1

3
x3 +

1

5
x5 − · · · ± 1

2n− 1
x2n−1 ∓ Pn(x))−

− (1− 1

3
+

1

5
− · · · ± 1

2n− 1
∓ Pn)| ≤

≤ |(x− 1

3
x3 +

1

5
x5 − · · · ± 1

2n− 1
x2n−1)−

− (1− 1

3
+

1

5
− · · · ± 1

2n− 1
)|+ |Pn(x)|+ |Pn| < 3ε.

Note that there is indeed a one-sided limit only: f(x) does not make sense
for x > 1.
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XX. Fourier series

1. Periodic and piecewise smooth functions.

1.1. Piecewise continuous and smooth functions. A real function
f : 〈a, b〉 :→ R is piecewise continuous if there are

a = a0 < a1 < a2 < · · · < an = b

such that

� f is continuous on each open interval (aj, aj+1) and

� there exist finite one-sided limits limx→aj+ f(x), j = 0, . . . , n − 1 and
limx→aj− f(x), j = 1, . . . , n.

It is piecewise smooth if, moreover,

� f has continuous derivatives on each open interval (aj, aj+1) and

� there exist finite one-sided limits limx→aj+ f
′(x), j = 0, . . . , n − 1 and

limx→aj− f
′(x), j = 1, . . . , n.

For y ∈ 〈a, b〉 set

f(y+) = lim
x→y+

f(x), f(y−) = lim
x→y−

f(x) and f(y±) =
f(y+) + f(y−)

2
.

We will speak of the ai as of the exceptional points of f .

1.1.1. Notes and observations. 1. A piecewise continuous f can be
extended to a continuous function on each 〈aj, aj+1〉. Consequently it has a
Riemann integral.

2. If y /∈ {a0, a1, . . . , an} then f(y+) = f(y−) = f(y±) = f(y). If
y = ai this may or may not hold. The division points ai in which f(ai+) =
f(ai−) = f(ai±) = f(ai) may be thought of as superfluous in the case of
plain piecewise continuity, but not so in the case of piecewise smoothness:
we consider also functions without derivatives in some of the points in which
they are continuous.

3. One may ask whether the points in which f(y+) = f(y−) 6= f(y) have
some special status. Not really: we will be mostly interested in integrals of
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piecewise continuous functions, and values in isolated points will not play
any role.

4. Recall VII.3.2.1. The last condition for piecewise smoothness is the
same as requiring that f has one-sided derivatives in the exceptional points.

1.2. Periodic functions. A real function f : R → R is said to be
periodic with period p if

∀x ∈ R, f(x+ p) = f(x).

1.2.1. Convention. A periodic function will be called piecewise contin-
uous resp. piecewise smooth if the restriction f |〈0, p〉 is piecewise continuous
resp. piecewise smooth.

1.3. A function on a compact interval represented as a periodic
function (and vice versa). In this chapter it will be of advantage to

represent a real function f : 〈a, b〉 → R as the periodic function f̃ : R → R
with period p = b− a defined by

f̃(x+ kp) = f(x) for x ∈ (a, b) and any integer k,

f̃(a+ kp) =
1

2
(f(a) + f(b)).

If this replacement is obvious, we write simply f instead of f̃ ; typically when
computing integrals, a possible change of values in a and b does not matter.

On the other hand, we do not loose any information when studying a
periodic function with period p restricted to some 〈a, a+ p〉.

1.4. Proposition. Let f be a piecewise continuous periodic function
with period p. Then∫ p

0

f(x)dx =

∫ p+a

a

f(x)dx for any a ∈ R.

Proof. Obviously
∫ c
b
f =

∫ c+p
b+p

f and hence the equality holds for a = kp
with k an integer. Now let a be general. Choose an integer k such that
a ≤ kp ≤ a+ p. Then∫ p+a

a

f =

∫ kp

a

f +

∫ p+a

kp

f =

∫ (k+1)p

p+a

f +

∫ p+a

kp

f =

=

∫ p+a

kp

f +

∫ (k+1)p

p+a

f =

∫ (k+1)p

kp

f =

∫ p

0

f.
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�

Substituting y = x+ C and using XI.5.5 we obtain

1.4.1. Corollary. For an arbitrary real C we have∫ p

0

f(x+ C)dx =

∫ p

0

f(x)dx.

2. A sort of scalar product.

To be able to work with sin kx and cos kx without adjustment we will
confine ourselves in the following, until 4.4.1, to periodic functions with the
period 2π.

2.1. If f, g are piecewise smooth on 〈−π, π〉 then obviously f +g and any
αf with real α are piecewise smooth. Thus the set of all piecewise smooth
functions on 〈−π, π〉 constitutes a vector space

PSF(〈−π, π〉).

2.2. For f, g ∈ PSF(〈−π, π〉) define

[f, g] =

∫ π

−π
f(x)g(x)dx.

This function [−,−] : PSF(〈−π, π〉) × PSF(〈−π, π〉) → R behaves almost
like a scalar product. See the following

2.2.1. Proposition. We have

(1) [f, f ] ≥ 0 and [f, f ] = 0 iff f(x) = 0 in all the non-exceptional x,

(2) [f + g, h] = [f, h] + [g, h], and

(3) [αf, g] = α[f, g].
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Proof is trivial; the only point that perhaps needs an explanation is the
second part of (1). If f(y) = a 6= 0 in a non-exceptional point then for some
δ > 0, f(x) > a

2
for y − δ < x < y − δ and we have

[f, f ] =

∫ pi

−π
f 2(y)dx ≥

∫ y+δ

y−δ
f 2(x)dx ≥ δ

a2

2
.

�

2.2.2. Note. The only flaw is in [f, f ] not quite implying f ≡ 0. But this
concerns only finitely many arguments and for our purposes it is inessential.

2.3. A few formulas to recall. From the standard formulas

sin(α + β) = sinα cos β + sin β cosα and

cos(α + β) = cosα cos β − sinα sin β

one immediately obtains (equally standard)

sinα cos β =
1

2
(sin(α + β)− sin(α− β)),

sinα sin β =
1

2
(cos(α− β)− cos(α + β)),

cosα cos β =
1

2
(cos(α + β) + cos(α− β)).

2.4. Proposition. For any two m,n ∈ N we have [sinmx, cosnx] =
0. If m 6= n then [sinmx, sinnx] = 0 and [cosmx, cosnx] = 0. Further,
[cos 0x, cos 0x] = [1, 1] = 2π and [cosnx, cosnx] = [sinnx, sinnx] = π for all
n > 0.

Thus, the system of functions

1

2π
,

1

π
cosx,

1

π
cos 2x,

1

π
cos 3x, . . . ,

1

π
sinx,

1

π
sin 2x,

1

π
sin 3x, . . .

is orthonormal in (PSF(〈−π, π〉), [−,−]).
Proof. By 2.3 we have sinmx cosnx = 1

2
(sin(m + n)x − sin(m − n)x),

sinmx sinnx = 1
2
(cos(m− n)x− cos(m+ n)x) and cosmx cosmx =

1
2
(cos(m + n)x + cos(m − n)x). Primitive function of sin kx resp. cos kx is
− 1
k

cos kx resp. 1
k

sin kx and we obtain the values easily from XI.4.3.1. �
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3. Two useful lemmas.

3.1. Lemma. Let g be a piecewise continuous function on 〈a, b〉. Then

lim
y→+∞

∫ b

a

g(x) sin(yx)dx = 0.

Proof. If a0, a1, . . . , an are the exceptional points of g we have
∫ b
a
g =∑n−1

i=0

∫ ai+1

ai
g and hence it suffices to prove the statement for continuous (and

hence uniformly continuous) g.
Since the primitive function of sin(yx) is − 1

y
cos(yx), we have for any

bounds u, v, ∣∣∣∣∫ v

u

sin(yx)dx

∣∣∣∣ =

∣∣∣∣[−1

k
cos(yx)

]v
u

∣∣∣∣ ≤ 2

y
.

Choose an ε > 0. The function g is uniformly continuous and hence there
is a δ > 0 such that for |x − z| < δ, |g(x) − g(z)| < ε. Choose a partition
a = t1 < t2 < · · · < tn = b of 〈a, b〉 with mesh < δ, that is such that
ti+1 − ti < δ fot all i.

Now let

y >
4

ε

n∑
i=1

|g(ti)|.

Then we have∣∣∣∣∫ b

a

g(x) sin(yx)dx

∣∣∣∣ =∣∣∣∣∣
n∑
i=1

(∫ ti

ti−1

(g(x)− g(ti)) sin(yx)dx+ g(ti)

∫ ti

ti−1

sin(yx)dx

)∣∣∣∣∣ ≤
≤

n∑
i=1

∫ ti

ti−1

ε

2(b− a)
dx+

n∑
i=1

|g(ti)| ·
∣∣∣∣∫ ti

ti−1

sin(yx)dx

∣∣∣∣ ≤ ε

2
+
∑
|g(ti)|

2

y
≤ ε.

�

3.1.1. Note. Lemma 3.1 is in fact a very intuitive statement. Suppose
we compute

∫ b
a
C sin(yx)dx with a constant C. Then if y is large we have

approximately as much of the function under and over the x-axis. Moreover,
if y is much larger still, this happens already on short subintervals of 〈a, b〉
where g behaves “almost like a constant”.
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3.2. Lemma. Let sin α
2
6= 0. Then

1

2
+

n∑
k=1

cos kα =
sin(2n+ 1)α

2

2 sin α
2

.

Proof. By the first formula in 2.3 we have

2 sin
α

2
cos kα = sin

(
kα +

α

2

)
− sin

(
(k − 1)α +

α

2

)
.

Thus,

2 sin
α

2

(
1

2
+

n∑
k=1

cos kα

)
= sin

α

2
+

n∑
k=1

2 sin
α

2
cos kα =

= sin
α

2
+

n∑
k=1

(
sin
(
kα +

α

2

)
− sin

(
(k − 1)α +

α

2

))
=

= sin(2n+ 1)
α

2
.

�

4. Fourier series.

4.1. Recall from linear algebra representing a general vector as a linear
combination of elements of an orthonormal basis.

Let
u1,u2, . . . ,un

be an orthonormal basis, that is a basis such that uiuj = δij, of a vector space
V endowed with a scalar product uv. Then a general vector a is expressed
as

a =
n∑
i=1

aiui where ai = aui.

We will see that something similar happens with the orthonormal system
from 2.4.

4.2. Let f be a piecewise smooth periodic function with period 2π. Set

ak = [f,
1

π
cos kx] =

1

π

∫ π

−π
f(t) cos ktdt for k ≥ 0, and

bk = [f,
1

π
sin kx] =

1

π

∫ π

−π
f(t) sin ktdt for k ≥ 1.

216



We will aim at a proof that f is almost equal to

a0
2

+
∞∑
k=1

(ak cos kx+ bk sin kx).

Thus, the orthonormal system from 2.3 behaves smilarly like an orthonormal
basis (as recalled in 4.1). There is, of course, the difference that we need infi-
nite sums (“infinite linear combinations”) to represent the f ∈ PSF(〈−π, π〉)
(which is essential) and that the f will be represented up to finitely many
values (which is inessential).

4.3. Set

sn(x) =
a0
2

+
n∑
k=1

(ak cos kx+ bk sin kx).

4.3.1. Lemma. For every n,

sn(x) =
1

π

∫ π

0

(f(x+ t) + f(x− t)) ·
sin(n+ 1

2
)t

2 sin 1
2
t

dt.

Proof. Using the definitions of an and bn and the standard formula for
cos k(x− t) = cos(kx− kt), and then using the equality from 3.2 we obtain

sn(x) =
1

π

∫ π

−π

(
1

2
+

n∑
k=1

(cos kt · cos kx+ sin kt · sin kx)

)
f(t)dt =

1

π

∫ π

−π

(
1

2
+

n∑
k=1

cos k(x− t)

)
f(t)dt =

1

π

∫ π

−π

(
f(t)

sin(n+ 1
2
)(x− t)

2 sin x−t
2

)
dt

Now substitute t = x+ z. Then dt = dz and z = t− x, and since sin(−u) =
− sinu we proceed (using also 1.4)

· · · = 1

π

∫ π

−π

(
f(x+ z)

sin(n+ 1
2
)z

2 sin 1
2
z

)
dz =

1

π

(∫ π

0

· · ·+
∫ 0

−π
· · ·
)
.

Substituting y = −z in the second summand we obtain

· · · = 1

π

∫ π

0

(
f(x+ z)

sin(n+ 1
2
)z

2 sin 1
2
z

)
dz +

1

π

∫ π

−π

(
f(x− y)

sin(n+ 1
2
)y

2 sin 1
2
y

)
dy
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and if we replace in the two integrals t for the respective variables, we con-
clude

· · · = 1

π

∫ π

0

(f(x+ t) + f(x− t))
sin(n+ 1

2
)t

2 sin 1
2
t

dt.

�

4.3.2. Corollary. For every n,

1

π

∫ π

0

sin(n+ 1
2
)t

sin 1
2
t

dt = 1.

Proof. Consider the constant funcion f = (x 7→ 1). Then a0 = 2 and
ak = bk = 0 for all k ≥ 1. �

4.4. Theorem. Let f be piecewise smooth periodic function with pe-
riod 2π. Then (as f(x±) = 1

2
(f(x+) + f(x−))

∑∞
k=1(ak cos kx + bk sin kx)

converges in every x ∈ R and we have (recall 1.1.)

f(x±) =
a0
2

+
∞∑
k=1

(ak cos kx+ bk sin kx).

Proof. By 4.3.1 and 4.3.2 we obtain

sn(x) =

=
1

π

∫ π

0

(2f(x±) + f(x+ t)− f(x+) + f(x− t)− f(x−))
sin(n+ 1

2
)t

sin 1
2
t

dt =

= f(x±) · 1

π

∫ π

0

sin(n+ 1
2
)t

sin 1
2
t

dt +

+
1

π

∫ π

0

(
f(x+ t)− f(x+)

t
+
f(x− t)− f(x−)

t

) 1
2
t

sin 1
2
t

sin

(
n+

1

2

)
tdt.

Set

g(t) =

(
f(x+ t)− f(x+)

t
+
f(x− t)− f(x−)

t

) 1
2
t

sin 1
2
t
.

This function g is piecewise continuous on 〈0, π〉 : this is obvious for t > 0
and in t = 0 we have a finite limit because of the left and right derivatives
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of f in x and the standard limt→0

1
2
t

sin 1
2
t

= 1. Thus, we can apply Lemma 3.1

(and Corollary 4.3.2) to obtain

lim
→∞

sn(x) = f(x±).

�

4.4.1. Theorem 4.4 can be easily transformed for piecewise smooth peri-
odic function with a general period p. For such f we obtain that

f(x±) =
a0
2

+
∞∑
k=1

(ak cos
2π

p
kx+ bk sin

2π

p
kx)

where

ak =
2

p

∫ p

0

f(t) cos
2π

p
ktdt for k ≥ 0, and

bk =
2

p

∫ p

0

f(t) sin
2π

p
ktdt for k ≥ 1.

Using the representation from 1.3 this can be applied for piecewise smooth
functions on a compact interval 〈a, b〉, setting p = b− a.

4.4.2. The series a0
2

+
∑∞

k=1(ak cos kx+bk sin kx) resp. a0
2

+
∑∞

k=1(ak cos kx+
bk sin kx) is called the Fourier series of f . Note that the sum is equal to f(x)
in all the non-exceptional points.

5. Notes.

5.1. The sums sn(x) are continuous while the resulting f is not necessarily
so. Thus, the convergence of the Fourier series in 4.4 is often not uniform
(recall XIX.1.3).

If the sums
∑
|an| and

∑
|bn| converge, then, of course, the Fourier series

converges uniformly and absolutely, and if
∑
n|an| and

∑
n|bn| converge

then we can take derivative by the individual summands.

5.2. Differentiating by individual summands may be false even if the
resulting sum has a derivative. Here is an example. Consider f(x) = x on
(−π, π〉 extended to a periodic function with the period 2π. Then we obtain

f(x±) = 2(sin x− 1

2
sin 2x+

1

3
sin 3x− 1

4
sin 4x+ · · · ).
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f(x) has a derivative 1 in all the x 6= (2k + 1)π. The formal differentiating
by summands would yield

g(x) = 2(cos x− cos 2x+ cos 3x− cos 4x+ · · · )

and if we write gn(x) for the partial sum up to the n-th summand we obtain
gn(0) = 2(1−1+1−· · ·+(−1)n+1), hence gn(0) = 0 for n even and gn(x) = 2
for n odd.

5.3. Note that for f with f(−x) = f(x) all the bn are zero, and if
f(−x) = −f(x) then all the an are zero.

5.4. Fourier series have an interesting interpretation in acoustics. A
tone is described by a periodic function f . The pitch is determined by the
period p (more precisely, it is given by the frequency 1

p
). The function f is

seldom close to be sinusoidal. The concrete shape of f determines the quality
(timbre) making for the character of the sound of that or other musical in-
strument. In the Fourier interpretation, we see that with the first summand,
a (sinusoidal) tone of the basic frequency defining the pitch, we have simul-
taneously sounding tones of double, triple, etc. frequency. Thus, e.g. when
playing flute one gets from the first to the second octave by “blowing away
the first basic tone” which results in a tone with twice the basic frequency.
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XXI. Curves and line integrals

1. Curves.

In the applications in the following chapter we will need planar curves
only. But for the material of the first two sections a restriction of dimension
would not make anything simpler.

1.1. Parametrized curve. A parametrized curve in En is a continuous
mapping

φ = (φ1, . . . , φn) : 〈a, b〉 → En
(where the compact interval 〈a, b〉 will be always assumed non-trivial, i.e,
with a < b).

1.2. Two equivalences. Parametrized curves φ = (φ1, . . . , φn) :
〈a, b〉 → En and ψ = (ψ1, . . . , ψn) : 〈c, d〉 → En are said to be weakly equiva-
lent if there is a homeomorphism α : 〈a, b〉 → 〈c, d〉 such that ψ ◦α = φ. We
write

φ ∼ ψ.
(This relation is obviously reflective: it is symmetric because the inverse of a
homeomorphism is a homeomorphism, and transitive because a composition
of homeomorphisms is a homeomorphism.)

Curves φ and ψ are said to be equivalent if there is an increasing home-
omorphism α : 〈a, b〉 → 〈c, d〉 such that ψ ◦ α = φ. We write

φ ≈ ψ.

1.2.1. We will work in particular with

� the curves represented by one-to-one φ, called simple arcs, and

� the curves represented by φ one-to-one with the exception of φ(a) =
φ(b), called simple closed curves.

1.2.2. Proposition. The ∼-equivalence class of a simple arc or a simple
closed curve is a disjoint union of precisely two ≈-equivalence classes.

Proof. Since φ ≈ ψ implies φ ∼ ψ, a ∼-class is a (disjoint) union of ≈-
classes. The homeomorphism α in ψ◦α = φ is (because of the assumption on
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φ) uniquely determined (it is uniquely determined on (a, b) and hence on the
whole compact interval by IV.5.1 - there are sequences in (a, b) converging
to a resp. b) and hence for instance φ and φ ◦ ι, where ι(t) = −t + b + a,
are ∼-equivalent but not ≈-equivalent. Now let φ ∼ ψ, with α such that
ψ ◦ α = φ. Then α by IV.3.4 either increases or decreases. In the first case,
ψ ≈ φ, in the second one, ψ ◦ α ◦ ι = φ ◦ ι and α ◦ ι increases so that
ψ ≈ φ ◦ ι. �

1.3. The ∼-equivalence class L = [φ]∼ is called a curve. The ≈-
equivalence classes associated with this curve represent its orientations; we
speak of oriented curves L = [φ]≈.

By 1.2.2, a simple arc, or a simple closed curve has two orientations.
A parametrized curve φ such that L = [φ]∼ resp. L = [φ]≈ is called a

parametrization of L.
Often we freely speak of a parametrized curve φ : 〈a, b〉 → En as of a

curve resp. oriented curve φ. We have in mind, of course, the associated ∼-
resp ≈-class.

1.3.1. Notes. 1. One may think of a parametrized curve as of a travel on
a path with φ(t) indicating where we are at the instant t. The ∼-equivalence
gets rid of this extra information (now we have just the railroad and not an
information of a concrete train moving on it). The orientation captures the
direction of the path.

The reader may think of a simpler description of a curve as of the image
φ[〈a, b〉], the “geometric shape” of φ. In effect, if φ, ψ parametrize a simple
arc or a simple closed curve, one can easily prove that φ[〈a, b〉] = ψ[〈c, d〉] if
and only if φ ∼ ψ. But using the equivalences classes has a lot of advantages
(already orienting a curve is simpler).

2. In the definitions of the equivalences ∼ resp. ≈ we have parametric
curves φ : 〈a, b〉 → En, ψ : 〈c, d〉 → En with distinct domains. If we choose
a fixed interval we can transform the ψ canonically to ψ ◦ λ : 〈a, b〉 → En
with λ(t) = 1

b−a((d − c)t + bc − da). Sometimes (see e.g. the definition of
φ∗ψ in 1.4 below) we freely shift the domain for convenience. This simplifies
formulas and does no harm.

3. Proposition 1.2.2 holds for simple arcs and simple closed curves only.
Draw a picture with φ(x) = φ(y) for some x 6= a, b to see that there are
more than two possible orientations.

4. The word “closed” in the expression “simple closed curve” has nothing
to do with the closedness of a subset of a metric space. Of course every
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φ[〈a, b〉] is a compact and hence a closed subset of the En in question.

1.4. Composing oriented curves. Let K,L be oriented curves repres-
nted by parametric ones φ : 〈a, b〉 → En, ψ : 〈b, c〉 → En (if the latter
has not originally started in b transform it as indicated in 3.3.1.2) such that
φ(b) = ψ(b). Set

(φ ∗ψ)(t) =

{
φ(t) for t ∈ 〈a, b〉 and

ψ(t) for t ∈ 〈b, c〉.

Obviously φ ∗ ψ is a continuous mapping 〈a, c〉 → En and we see that if
φ ≈ φ1 : 〈a1, b1〉 → En and ψ ≈ ψ1 : 〈b1, c1〉 → En then φ ∗ ψ ≈ φ1 ∗ ψ1

(note that it is essential that K,L are oriented curves, not just curves). Thus,
the oriented curve (determined by) φ ∗ ψ depends on K, L only; it will be
denoted by

K + L.

(Note that the operation K + L is associative.)

1.5. The opposite orientation. For an oriented curve L represented
by φ : 〈a, b〉 → En define the oriented curve with oposite orientation

−L

as the ≈-class of φ ◦ ι : 〈a, b〉 → En with ι(t) = −t + b + a (recall the proof
of 1.2.2). Obviously −L is determined by L.

1.6. Piecewise smooth curves. Recall XX.1.1. A parametrized curve
(oriented curve, or curve) φ = (φ1, . . . , φn) : 〈a, b〉 → En is said to be piece-
wise smooth if each of the φj is piecewise smooth such that, moreover, the
system of the exceptional points a = a0 < a1 < a2 < · · · < an = b can be
chosen so that

� for each of the open intervals J = (ai, ai+1), there is a j such that φ′j(t)
is either positive or negative on the whole of J .

However, we will relax the definition of piecewise smoothness by allowing
the one-sided limits limt→aj+ φ

′
j(t) and limt→aj− φ

′
j(t)) (in fact, the one-sided

derivatives in the exceptional points – recall VII.3.2) infinite.
We will write

φ′ for (φ′1, . . . , φ
′
n)
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(thus in finitely many points t ∈ 〈a, b〉, the value φ′(t) may be undefined; but
the derivative will appear only under an integral so that it does not matter).

1.6.1. Observation. Let curves φ = (φ1, . . . , φn) : 〈a, b〉 → En and ψ =
(ψ1, . . . , ψn) : 〈c, d〉 → En be piecewise smooth and let α be such that ψ = φ◦
α, providing either the ∼- or the ≈-equivalence of the two parametrizations.
Then α is continuous and piecewise smooth.

(Indeed, between any two exceptional points, some of the φj is one-to-one.
Then we have α = φ−1j ◦ ψj on the interval in question.)

2. Line integrals.

Convention. From now on, the curves will be always piecewise smooth.

Note. The reader may wonder why we will speak first on the line integral
of the second kind and only later on the line integral of the first kind. The
terminology of “first” resp. “second kind” is traditional. The reason may be
in the more obvious geometric sense of the first kind line integral. But the
line integral of the second kind is more fundamental (and in fact the first one
can be expressed in its terms, which cannot be done reversely).

2.1. Line integral of the second kind. Let φ = (φ1, . . . , φn) : 〈a, b〉 →
En be a parametrization of an oriented curve L and let f : (f1, . . . , fn) : U →
En be a continuous vector function defined on a U ⊇ φ[〈a, b〉]. The line
integral of the second kind over the (oriented) curve L is the number

(II)

∫
L

f =

∫ b

a

f(φ(t)) · φ′(t) dt =
n∑
j=1

∫ b

a

fj(φ(t))φ′j(t)dt.

(Thus the dot in
∫ b
a
f(φ(t)) ·φ′(t) dt indicates the standard scalar product of

the n-tuples of reals.) If there is no danger of confusion, we write simply
∫
L

instead of (II)
∫
L
.

Note. The reader may encounter the line integral of the second kind of,
say, vector functions (P,Q) or (P,Q,R), denoted by∫

L

Pdx+Qdy or

∫
L

Pdx+Qdy +Rdz.
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2.2. Proposition. The value of the line integral
∫
L
f does not depend

on the choice of parametrization of L.
Proof. Suppose φ = ψ ◦ α, with an increasing homeomorphism α :

〈a, b〉 → 〈c, d〉. By 1.6.1, α is piecewise smooth. Then by XI.5.5

n∑
j=1

∫ b

a

fj(φ(t))φ′j(t)dt =
n∑
j=1

∫ b

a

fj(ψ(α(t)))ψ′j(α(t))α′(t)dt =

=
n∑
j=1

∫ d

c

fj(ψ(t))ψ′j(t)dt.

�

2.3. Proposition. For the operations from 1.5 and 1.4 we have

(II)

∫
−L

f = −(II)

∫
L

f and (II)

∫
L+K

f = (II)

∫
L

f + (II)

∫
K

f.

Proof. In the proof of 2.2 above we obtained
∫ d
c

because α was increasing.

For a decreasing α the substitution would yield
∫ c
d

= −
∫ d
c

, hence (II)
∫
−L f =

−(II)
∫
L
f. The other equation is obvious. �

2.4. Line integral of the first kind: just for information. Some-
times also called the line integral acording to length, it is defined for a
non-oriented curve parametrized by φ = (φ1, . . . , φn) : 〈a, b〉 → En. Let
f : U → R be a continuous real function defined on a U ⊇ φ[〈a, b〉]. The
idea is in modifying Riemann integral by computing the sums along a (piece-
wise smooth) line instead of along an interval. The sums

k∑
i−1

f(φ(ti))‖φ(ti))− φ(ti−1))‖

considered for partitions a = t0 < t1 < · · · < tk = b converge with the mesh
of the partitions converging to 0 to∫ b

a

f(φ(t))‖φ′(t))‖ dt.

This integral is called the line integral of the first kind over L and denoted
by

(I)

∫
L

f or (I)

∫
L

f(x)‖dx‖.
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It has a clear geometrical sense; in particular,
the length of a curve L can be expressed as

(I)

∫
L

1 =

∫ b

a

‖φ′(t)‖dt.

.

It is easy to see that the line integral of the first kind can be represented
as a line integral of the second kind: we have

(I)

∫
L

f = (II)

∫
L

f

where

f(φ(t)) =
φ′(t)

‖φ′(t)‖
.

2.5. Complex line integral. While we will not need the line integral of
the first kind in the following text, the complex line integral will be essential.

2.5.1. Complex functions of a real variable. Without much further
mentioning we will identify the complex plane C with the Euclidean plane
E2 (viewing x + iy as (x, y) and taking into account that the absolue value
of the difference |z1 − z2| coincides with the Euclidean distance). We only
have to keep in mind that the structure of C is richer and that in particular
we have the multiplication in the field C.

A complex function of one real variable will be decomposed into two real
functions,

f(t) = f1(t) + if2(t)

and we will define (unsurprisingly) its derivative f ′(t) as f ′1(t) + if2(t) and
its Riemann integral as∫ b

a

f(t)dt =

∫ b

a

f1(t)dt+ i

∫ b

a

f2(t)dt.

A curve in C in a parametrized form is a mapping φ : 〈a, b〉 → C, often
written as φ(t) = φ1(t) + iφ2(t). It will be treated (with respect to the
definitions of the equivalence, smoothness, etc.) as the parametrized curve
φ(t) = (φ1(t), φ2(t)); the values in C can be subjected to complex multipli-
cation.
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2.5.2. For an oriented piecewise smooth curve φ : 〈a, b〉 → C define the
complex line integral of a complex function of one complex variable by setting∫

L

f(z)dz =

∫ b

a

f(φ(t)) · φ′(t)dt.

The multiplication indicated by · is now (unlike all the multiplications in
previous pages) the multiplication in the field C.

The invariance on the choice of parametrization will be seen in the fol-
lowing proposition.

2.5.3. Proposition. Think of a complex function of one complex vari-
able f(z) = f1(z) + if2(z) as of a vector function f = (f1, f2). Then the
complex line integral over L can be expressed as a line integral of second kind
as follows: ∫

L

f(z)dz = (II)

∫
l

(f1,−f2) + i(II)

∫
L

(f2, f1).

Consequenly,

�

∫
L
f(z)dz does not depend on the choice of parametrization, and

� we have
∫
−L f(z)dz = −

∫
L
f(z)dz and

∫
L+K

f(z)dz =
∫
L
f(z)dz +∫

K
f(z)dz.

Proof. We have∫ b

a

f(φ(t))φ′(t)dt =

∫ b

a

(f1(φ(t)) + if2(φ(t)))(φ′1(t) + iφ′2(t))dt =

=

∫ b

a

(f1(φ(t))φ′1(t)− f2(φ(t))φ′2(t))dt+ i

∫ b

a

(f1(t)φ
′
2(t) + f2(t)φ

′
1(t))dt =

=

∫ b

a

(f1(φ(t)),−f2(φ(t)))(φ1(t), φ2(t)) + i

∫ b

a

(f2(φ(t)), f1(φ(t)))(φ1(t), φ2(t))

(in the last line we have the scalar products of the pairs). We conclude

· · · = (II)

∫
L

(f1,−f2) + i(II)

∫
L

(f2, f1).

�
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3. Green’s Theorem.

3.1. First, just for information, we will introduce some facts in a gener-
ality beyond our technical means. But in the applications in the following
text we will need them only for very special cases, for which we will be able
to present sufficiently rigorous proofs.

A simple closed curve L divides the plane into two connected regions
(by “connected” one can understand that any two points can be connected
by a curve, ”divided” means that points from distinct regions cannot be so
connected), one of them bounded, the other unbounded. This is the famous
Jordan theorem, very easy to understand and visualize, but not very easy to
prove. The bounded region U will be called the region of L. The curve C
is its boundary, and the closure U is equal to U ∪ C and (being closed and
bounded) it is compact; we will speak of C as of the closed region4 of C.

In the following we will have to understand also the meaning of the ex-
pression ”clockwise” resp. ”counterclockwise oriented closed curve”. This
can be given an exact general sense, but we will need it only for very simple
figures like circles, (perimeters of) triangles, and similar, where the meaning
of the expression will be obvious. The integral over a closed region can be
understood as over an interval J containing the region M , with the function
extended by values zero on J rM .

3.1.1. Theorem. (Green’s Theorem, Green’s Formula) Let L be a simple
closed piecewise smooth curve oriented counterclockwise, and let M be its
closed region. Let f = (f1, f2) be such that both fj have continuous partial
derivatives on the (open) region of L. Then

(II)

∫
L

f =

∫
M

(
∂f2
∂x1
− ∂f1
∂x2

)
dx1dx2 .

.

3.2. Lemma. Let g : 〈a, b〉 → R be a smooth function, let f(x) ≥ c for
all x. Set

M = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ g(x)}.
Let L be the closed curve which is the perimeter of M . Then the Green
formula holds true for L and M .

4In the literature one usually speaks of domains. We use the term “region” to avoid
confusion with domains A of mappings f : A→ B.
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Proof. Write L = L1 +L2 +L3 +L4 as indicated in the following picture.

(a, g(a))

L2

��

(b, g(b))

L1

y=g(x)

nn

(a, c)
L3

// (b, c)

L4

OO

Parametrize the curves Lj by

−L1 : φ1 : 〈a, b〉 → R2, φ1(t) = (t, g(t)),

−L2 : φ2 : 〈c, g(a)〉 → R2, φ2(t) = (a, t),

L3 : φ3 : 〈a, b〉 → R2, φ3(t) = (t, c),

L4 : φ4 : 〈c, g(b)〉 → R2, φ4(t) = (b, t).

Hence φ′1(t) = (1, g′(t)), φ′2(t) = φ′a(t) = (0, 1) and φ′3(t) = (1, 0) and we have

(II)

∫
L1

= −
∫ b

a

f1(t, g(t))dt−
∫ b

a

f2(t, g(t))g′(t)dt,

(II)

∫
L2

= −
∫ g(a)

c

f2(a, t)dt, (II)

∫
L3

=

∫ b

a

f1(t, c)dt, (II)

∫
L4

=

∫ g(b)

c

f2(b, t)dt.

Substituting τ = g(t) in the second integral in the formula for (II)
∫
L1

we
obtain

(II)

∫
L1

= −
∫ b

a

f1(t, g(t))dt+

∫ g(a)

g(b)

f2(h(τ), τ)dτ

where h is the inverse of g.
Now, to be ready for the statement of the lemma, we will start to write

x1 for the first variable, and x2 for the second one. For (II)
∫
L

written as

(II)
∫
L1

+(II)
∫
L2

+(II)
∫
L3

+(II)
∫
L4

we now obtain (writing the
∫ g(a)
c

in the for-

mula for (II)
∫
L2

as
∫ g(b)
c

+
∫ g(a)
g(b)

)

(II)

∫
L

=

∫ g(b)

c

(f2(b, x2)− f2(a, x2))dx2 +

∫ g(a)

g(b)

(f2(h(x2), x2)− f2(a, x2))dx2−

−
∫ b

a

(f1(x1, g(x1))− f1(x1, c))dx1.
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Extending for the purpose of the integral in two variables the definition of
the functions to the interval J = 〈a, b〉 × 〈c, g(a)〉 by values 0 in J rM we
obtain

f2(b, x2)− f2(a, x2) =

∫ b

a

∂f2(x1, x2)

∂x1
dx1,

f2(h(x2), x2)− f(a, x2) =

∫ h(x2)

a

∂f2(x1, x2)

∂x1
dx1 =

∫ b

a

∂f2(x1, x2)

∂x1
dx1, and

f1(x1, g(x1))− f1(x1, c) =

∫ g(x1)

c

∂f1(x1, x2)

∂x2
dx2 =

∫ g(a)

c

∂f1(x1, x2)

∂x2
dx2

so that the formula above transforms to

(II)

∫
L

f =

∫ g(a)

c

(∫ b

a

∂f2(x1, x2)

∂x1
dx1

)
dx2 −

∫ b

a

(∫ g(a)

c

∂f1(x1, x2)

∂x2
dx2

)
dx1

and the statement follows from Fubini’s theorem (XVI.4.1). �

3.3. Now we have the Green’s formula in particular also for quadrangles
and right-angled triangles with the hypotenuse possibly curved. Using the
fact that (II)

∫
L

= −(II)
∫
−L we obtain the formula for any figure that can be

cut into such figures. Thus for instance using the decomposition as in the
following picture

·

�� ��
· // ·

OO

// ·

cc

we infer that

3.3.1. the Green’s formula holds for any triangle.

Or, using the decomposition of a disc as in

·
L2



L11

��
·

L3 --

L21 // ·
L32

oo

L22

OO

L42

��

L12 // ·
L41

oo

L1

mm

· L4

MM

L41

OO
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we obtain that

3.3.2. the Green’s formula holds for any disc.
(Note, however, that in the ”curved rectangles” in this decomposition the
parametrization from 3.2 would not work: the function g would not have a
requested derivative at one of the ends. One can use, for instance, φ(t) =
(cos t, sin t). Or, of course, one can cut the disc into more than four pieces.)

3.3.3. Note. In fact, any region of a piecewise smooth curve can be
decomposed into subregions for which the formula follows from Lemma 3.2.
This is easy tu visualize. But we will need just simple figures for which the
decompositions are obvious and a painstaking proof of the general statement
is not necessary.

3.4. Proposition. Let L be a circle with center c and let M be its
closed region. Let f be bounded on M , let partial derivatives of fj exist and

be continuous on M r {c}, and let
∫
M

(
∂f2
∂x1
− ∂f1

∂x2

)
dx1dx2 make sense. Then

the Green’s formula holds.
Proof. Denote by Kn the circle with center c and diameter 1

n
oriented

clockwise, let N(n) be its region. Let the n be large enough so that Kn (and
hence also N(n)) is contained in M . In the following picture.

·
L2

��

Ln11

��
· Kn

1

��

Ln22

OO

·

L3

--

Ln21 // ·
Ln32

oo

Kn
2 55

· ·
Kn

4
uu

Ln12 // ·
Ln41

oo

L1

mm

·

Ln42

��

Kn
3

TT

·
L4

NN

Ln31

OO

consider the (cunterclockwise oriented) simple closed curves L̃nk = Lk+Lnk1 +
Kn
k +Lnk2 with regions Mk(n). For these curves the Green’s formula obviously

holds (suitable carving the shapes
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·

��
·

OO

· // ·
11

is easy) and we have

(II)

∫
L̃nk

f =

∫
Mk(n)

(
∂f2
∂x1
− ∂f1
∂x2

)
. (∗)

By 2.3,

(II)

∫
L̃n1

+(II)

∫
L̃n2

+(II)

∫
L̃n3

+(II)

∫
L̃n4

= (II)

∫
L

+(II)

∫
Kn

. (∗∗)

Set V = V (x1, x2). Since we assume that the Riemann integral
∫
M
V (x1, x2)

exists, V is bounded, that is, we have |V (x1, x2)| < A for some A. Since
N(n) ⊆ 〈c− 1

n
, c+ 1

n
〉 × 〈c− 1

n
, c+ 1

n
〉, we have∣∣∣∣∫

N(n)

V

∣∣∣∣ < ε for sufficiently large n.

f is bounded by assumption and hence we also have (we can parametrize
−Kn, say, by φ(t) + 1

n
(cos t, sin t))∣∣∣∣(II)∫
Kn

f

∣∣∣∣ < ε for sufficiently large n.

Now we have by (∗) and (∗∗)

(II)

∫
L

+(II)

∫
Kn

=

∫
M1(k)

V +

∫
M2(k)

V +

∫
M3(k)

V +

∫
M4(k)

V =

∫
M

V −
∫
N(k)

V

and hence

|(II)
∫
L

f −
∫
M

V | ≤ (II)

∫
Kn

+

∫
N(k)

V

and since the right hand side is arbitrarily small the statement follows. �

3.4.1. Note. 1. Proposition 3.4 is only a very special case of a general
fact. The same holds for a general piecewise smooth simple closed curve L
with region M and an exceptional point c ∈M .

2. The boundedness of f is essential as one can see for instance in XXII.4.1
below.
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XXII. Basics of complex analysis

1. Complex derivative.

1.1. In the field C of complex numbers we have not only all the arith-
metic operations but also the metric structure allowing to speak about limits.
Therefore, given a function f defined in a neighbourhood U ⊆ C of a point
z we can ask whether there exists a limit

lim
h→0

f(z + h)− f(z)

h

If it does we will speak of a derivative of f at z, and denote the value by

f ′(z),
df(z)

dz
,

df

dz
z, etc.,

similarly like in the real context. Thus for instance, like for the real power
xn we have

(zn)′ = lim
h→0

(z + h)n − zn

h
= lim

h→0

∑n
k=1

(
n
k

)
xn−khk

h
=

= lim
h→0

(nzn−1 + h
n∑
k=2

(
n

k

)
xn−khk−2) = nzn−1.

Similarly like in VI.1.5 we have

1.1.2. Proposition. A function f has a derivative A at a z ∈ C if
and only if there exists for a sufficiently small δ > 0 a complex function
µ : {h | [h| < δ} → C such that

(1) limh→0 µ(h) = 0, and

(2) for 0 < |h| < δ,

f(z + h)− f(z) = Ah+ µ(h)h.

(|h| is, of course, the absolute value in C).

(Indeed, similarly like in VI.1.5, if A = limh→0
f(z+h)−f(z)

h
exists then

µ(h) = f(x+h)−f(x)
h

− A has the required properties, and if a µ satisfying (1)
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and (2) exists then we have for small |h|, f(z+h)−f(x)
h

= A + µ(h), and the
limit f ′(x) exists and is equal to A.)

1.1.3. Corollary. Let f have a derivative at z. Then it is continuous at
this point.

1.2. A somewhat surprising example. Proposition 1.1.2 seems to
suggest that similarly like in the real case, the existence of a derivative can
be interpreted as a “geometric tangent” and expresses a sort of smoothness.
But it is a much more special property.

Consider f(z) = z (the complex conjugate) and compute the derivative .
Writing h = h1 + ih2 we obtain

z + h− z
h

=
z + h− z

h
=
h

h
=

{
1 for h1 6= 0 = h2

−1 for h1 = 0 6= h2.

Hence, there is no limit limh→0
z+h−z
h

and our f does not have a derivative at
any z whatsoever, while there can be hardly any mapping C→ C smoother
than this f which is just a mirroring along the real axis.

1.3. Complex partial derivatives

∂f(x, ζ)

∂z
resp.

∂f(x, ζ)

∂ζ

are (similarly as in the real context) derivatives as above with ζ resp. z fixed.

2. Cauchy-Riemann conditions.

Let us write a complex z as x + iy with real x, y and express a com-
plex function f(z) of one complex variable as two real functions of two real
variables

f(z) = P (x, y) + iQ(x, y).

2.1. Theorem. Let f have a derivative at z = x + iy. Then P and Q
have partial derivatives at (x, y) and satisfy the equations

∂P

∂x
(x, y) =

∂Q

∂y
(x, y) and

∂P

∂y
(x, y) = −∂Q

∂x
(x, y).
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For the derivative f ′ we then have the formula

f ′ =
∂P

∂x
+ i

∂Q

∂x
=
∂Q

∂y
− i∂P

∂y
.

Proof. We have

1

h
(f(z + h)− f(z)) =

1

h1 + ih2
(P (x+ h1, y + h2)− P (x, y))+

+ i
1

h1 + ih2
(Q(x+ h1, y + h2)−Q(x, y)).

If there is a limit L = limh→0
1
h
(f(z + h)− f(z)) then we have in particular

the limits L = limh1→0
1
h1

(f(z+h1)− f(z)) and L = limh2→0
1
ih2

(f(z+ ih2)−
f(z)) = −i limh2→0

1
h2

(f(z + ih2)− f(z)). That is,

L = lim
h1→0

1

h1
(P (x+ h1, y)− P (x, y)) + i lim

h1→0

1

h1
(Q(x+ h1, y)−Q(x, y)) =

=
∂P

∂x
(x, y) + i

∂Q

∂x
(x, y)

and in the second case,

L = −i lim
h2→0

1

h2
(P (x, y + h2)− P (x, y)) + i lim

h2→0

1

ih2
(Q(x, y + h2)−Q(x, y)) =

=
∂Q

∂y
(x, y)− i∂P

∂y
(x, y).

�

2.1.1. The (partial differential) equations

∂P

∂x
=
∂Q

∂y
and

∂P

∂y
= −∂Q

∂x

are called the Cauchy-Riemann equations or the Cauchy-Riemann conditions.
We have proved that they are necessary for the existence of a derivative.
Now we will show that if we, in addition, assume continuity of the partial
derivatives, these conditions suffice.

2.2. Theorem. Let a complex function f(z) = P (x, y) + iQ(x, y) satisfy
in an open set U ⊆ C the Cauchy-Riemann equations and let all the partial
derivatives involved be continuous in U . Then f has a derivative in U .
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Proof. By the Mean Value Theorem for real derivatives we have for
suitable 0 < α, β, γ, δ < 1,

1

h
(f(z + h)− f(z)) =

=
1

h
(P (x+ h1, y + h2)− P (x, y) + i(Q(x+ h1, y + h2)−Q(x, y))) =

=
1

h
(P (x+ h1, y + h2)− P (x+ h1, y) + P (x+ h1, y)− P (x, y))+

+ i
1

h
(Q(x+ h1, y + h2)−Q(x+ h1, y) +Q(x+ h1, y)−Q(x, y)) =

=
1

h

(∂P (x+ h1, y + αh2)

∂y
h2 +

∂P (x+ βh1, y)

∂x
h1+

+ i
∂Q(x+ h1, y + γh2)

∂y
h2 + i

∂Q(x+ δh1, y)

∂x
h1

)
and using the Cauchy-Riemann equations we proceed

· · · = 1

h

(
− ∂Q(x+ h1, y + αh2)

∂x
h2 +

∂P (x+ βh1, y)

∂x
h1+

+ i
∂P (x+ h1, y + γh2)

∂x
h2 + i

∂Q(x+ δh1, y)

∂x
h1

)
=

=
∂P (x+ βh1, y)

∂x
+ F (h1, h2, β, γ)

ih2
h

+ i
∂Q(x+ δh1, y)

∂x
+G(h1, h2, α, δ)

h2
h

where

F (h1, h2, β, γ) =
∂P (x+ h1, y + γh2)

∂x
− ∂P (x+ βh1, y)

∂x
and

G(h1, h2, α, δ) =
∂Q(x+ h1, y + αh2)

∂x
− ∂Q(x+ δh1, y)

∂x
.

Since |h2| ≤ |h| and F (· · · ) and G(· · · ) converge to 0 for h→ 0 by continuity,
the expression converges to ∂P

∂x
(x, y) + i∂Q

∂x
(x, y). �

2.3. Complex functions f : U → C, U ⊆ C, with continuous partial
derivatives satisfying the Cauchy-Riemann conditions are said to be holo-
morphic (in U).
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3. More about complex line integral.

Primitive function.

Recall the complex line integral from XXI.2.5.2∫
L

f(z)dz =

∫ b

a

f(φ(t)) · φ′(t)dt (∗)

and its representation as a line integral of second kind (XXI.2.5.3)∫
L

f(z)dz = (II)

∫
L

(f1,−f2) + i(II)

∫
L

(f2, f1).

3.1. Theorem. Let f(z, γ) be a continuous complex function of two
complex variables defined in V ×U , U open, and let for each fixed z ∈ V the
function f(z,−) be holomorphic in U . Let L be a piecewise smooth oriented
curve in V . Then for γ ∈ U ,

d

dγ

∫
L

f(z, γ)dz =

∫
L

∂f(z, γ)

∂γ
dz.

Proof. Write z = x+ iy, γ = α + iβ and

f(z, γ) = P (x, y, α, β) + iQ(x, y, α, β).

By XXI.2.5.3 we have for f(γ) =
∫
L
f(z, γ)dz by the definition of complex

line integral
F (γ) = P(α, β) + iQ(α, β)

where

P(α, β) = (II)

∫
L

(P (x, y, α, β),−Q(x, y, α, β)),

Q(α, β) = (II)

∫
L

(Q(x, y, α, β), P (x, y, α, β)).

Since f is holomorphic at γ, it satisfies the equations ∂P
∂α

= ∂Q
∂β

and ∂P
∂β

=

−∂Q
∂α

and we obtain from the definitions of the complex line integral and its
expression as in XXI.2.5.3, and from XXVIII.2.4.2 that

∂P
∂α

= (II)

∫
L

(
∂P

∂α
,−∂Q

∂α

)
= (II)

∫
L

(
∂Q

∂β
,
∂P

∂β

)
=
∂Q
∂β

,

∂P
∂β

= (II)

∫
L

(
∂P

∂β
,−∂Q

∂β

)
= −(II)

∫
L

(
∂Q

∂α
,
∂P

∂α

)
= −∂Q

∂α

(∗)
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and hence the function F (γ) is holomorphic in U . Using the formula for the
derivative from 2.1 we can conclude that∫
L

∂f(z, γ)

∂γ
dz = (II)

∫
L

(
∂P

∂α
,−∂Q

∂α

)
+i(II)

∫ (
∂Q

∂α
,
∂P

∂α

)
=
∂P
∂α

+i
∂Q
∂α

=
dF

dγ
.

�

3.2. Theorem. Let L be an oriented curve parametrized by φ and let
fn be continuous complex functions defined (at least) on L. If fn uniformly
converge to f then ∫

L

f = lim
n

∫
L

fn.

In particular if
∑∞

n=1 gn is a uniformly convergent series of continuous func-
tions defined on L then ∫

L

(
∞∑
n=1

gn

)
=
∞∑
n=1

∫
L

gn.

Proof. Since φ is piecewise smooth, φ′ is bounded, say by A on L. Con-
sequently we have

|fn(φ(t)) · φ′(t)− f(φ(t)) · φ′(t)| = |(fn(φ(t))− f(φ(t))) · φ′(t)| =
= |fn(φ(t))− f(φ(t))| · |φ′(t)| ≤ |fn(φ(t))− f(φ(t))| · A

and hence fn ⇒ f implies that (fn ◦ φ) · φ′ ⇒ (f ◦ φ) · φ′ and we can use
XVIII.4.1 and the formula (∗).

For the second statement it now sufficers to realize that
∫
L
(f + g) =∫

L
f +

∫
L
g. �

The following theorem will be formulated (similarly like XXI.3.1) in a gen-
erality we will not have really proved. But we will use it only for curves with
easily decomposed regions (recall XXI.3.3 through 3.4.1) which are covered
by rigorous proofs.

3.3. Theorem. 1. Let f have derivatives in an open set U ⊆ C and
let L be an oriented piecewise smooth simple closed curve such that its closed
region is contained in U . Then∫

L

f(z)dz = 0.
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2. The formula also holds if f is undefined at one of the points of its
region provided f is bounded.

Proof. By XXI.2.5.3 we have for f(z) = P (x, y) + iQ(x, y),∫
L

f = (II)

∫
L

(P,−Q) + i(II)

∫
L

(Q,P )

and by Green’s formula (whether we have in mind the situation from stayement
1, or that from statement 2) we obtain∫

L

f =

∫
M

(
−∂Q
∂x
− ∂P

∂y

)
+ i

∫
M

(
∂P

∂x
− ∂Q

∂y

)
= 0

because by Cauchy-Riemann equations the functions under the integrals
∫
M

are zero. �

3.4. Recall that a subset U ⊆ C is convex if for any two points a, b ∈ U
the whole of the line segment {z | z = a + t(b − a), 0 ≤ t ≤ 1} is contained
in U .

Let f have a derivative in a convex open U . Choose an a ∈ U and for an
arbitrary u ∈ U define

L(a, u)

as the oriented curve parametrized by φ(t) = a+ t(u− a). Set

F (u) =

∫
L(a,u)

f(z)dz.

3.4.1. Proposition. The function F is a primitive function of f in U.
That is, for each u ∈ U the (complex) derivative F ′(u) exists and is equal to
f(u).

Proof. Let h be such that u + h ∈ U . We have the piecewise smooth
closed simple curve

L(a, u) + L(u, u+ h)− L(a, u+ h)

and hence by 3.3.1 and XXI.2.4,

F (u+ h)− F (u) =

∫
L(a,u+h)

f −
∫
L(a,u)

f =

∫
L(u,u+h)

f.
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Using the parametrization φ as above (and writing f = P + iQ) we obtain

1

h
(F (u+ h)− F (u)) =

1

h

∫ 1

0

f(u+ th)dt =

=
1

h

∫ 1

0

P (u+ th)dt+ i
1

h

∫ 1

0

Q(u+ th)dt = P (u+ θ1h) + iQ(u+ θ2h)

(for the last equality use the Integral Mean Value Theorem XI.3.3) and this
converges to f(u) = P (u) + iQ(u). �

3.4.2. Note. Working with a convex U was just a matter of convenience.
More generally, the same can be proved for simply connected open sets U
(“open sets without holes”). Instead of the L(a, u) one can take oriented
simple arcs L starting with a and ending in u; the integral over such an L
depends on a and u only (this is an immediate consequence of 3.3.1 if two
such curves L1, L2 meet solely in a and u - use the simple closed curve L1−L2

- but it can be proved for curves that intersect as well. For connected but
not simply connected U the situation is different, though.

4. Cauchy’s Formula.

4.1. Lemma Let K be a circle with center z and an arbitrary radius r,
oriented counterclockwise. Then∫

K

dζ

ζ − z
= 2πi.

Proof. Parametrize K by φ(t) = z + r(cos t + i sin t), 0 ≤ t ≤ 2π. Then
φ′(t) = r(− sin t+ i cos t) and hence∫

K

dζ

ζ − z
=

∫ 2π

0

r(− sin t+ i cos t)

r(cos t+ i sin t)
dt =

∫ 2π

0

idt = 2πi,

since − sin t+ i cos t = i(cos t+ i sin t). �

4.1.1. Note. Compare this equality with the value 0 in 3.3.2. The
function under the integral is holomorphic everywhere with the exception of
just one point. But theorem 3.3.2 cannot be applied since f is not bounded
in the region of K.
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4.2. Theorem. (Cauchy’s Formula) Let a complex function of one
variable f have a derivative in a set U containing the closed region of a
circle K with center z, oriented counterclockwise. Then

1

2πi

∫
K

f(ζ)

ζ − z
dζ = f(z).

Proof. We have∫
K

f(ζ)

ζ − z
dζ =

∫
K

f(z)

ζ − z
dζ +

∫
K

f(ζ)− f(z)

ζ − z
dζ =

= f(z)

∫
K

dζ

ζ − z
+

∫
K

f(ζ)− f(z)

ζ − z
dζ = 2πif(z) +

∫
K

f(ζ)− f(z)

ζ − z
dζ

by lemma 4.1. Now the function g(ζ) = f(ζ)−f(z)
ζ−z is holomorphic for ζ 6= z.

In the point z it has a limit, namely the derivative f ′(z). Thus it can be
completed to a continuous function, hence it is bounded and we can apply
3.3.2 to see that the integral is 0. �

4.2.1. Note. Cauchy formula plays in complex differential calculus
a central role similar to that played by the Mean Value Theorem in real
analysis. We will see some of it in the next chapter.

4.3. Theorem. If a complex function has a derivative in a neighbourhood
of a point z then it has derivatives of all orders in this neighbourhood. More
concretely, we have

f (n)(z) =
n!

2πi

∫
K

f(ζ)

(ζ − z)n+1
dζ.

Proof. This is an immediate consequence of Cauchy’s formula and theo-
rem 3.1: take repeatedly partial derivatives behind the integral sign. �

4.3.1. Note. We have already observed that the existence of a derivative
in the complex context differs from the differentiability in real analysis. Now
we see how much stronger it is. In the next chapter we will see that in fact
only power series have complex derivatives.

4.4. Corollary. A function f is holomorphic in an open set U iff it has
a derivative in U .
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In other words f has a derivative in U iff it has continuous partial deriva-
tives satisfying the Cauchy-Riemann equations.

Proof. If f has a derivative f ′, it also has the second derivative f ′′ and
hence f ′ has to be continuous. The other implication is trivial. �

4.4.1. Note. In other words, Theorem 2.2 can be reversed.
The question naturally arises whether Theorem 2.1 can be reversed, that

is, whether just the Cauchy-Riemann equations suffice (whether they auto-
matically imply continuity). The answer is in the negative.

4.5. Proposition. A complex function has a primitive function in a
convex open set U if and only if it has a derivative in U .

Proof. If it has a derivative, it has a primitive function by 3.4.1. On
the other hand, if F is a primitive function of f , it has by 4.3 the second
derivative F ′′ = f ′. �

(This is another fact strongly contrasting with real analysis.)
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XXIII. A few more facts of complex analysis

1. Taylor formula.

1.1. Theorem. (Complex Taylor Series Theorem) Let f be holomorphic
in a neighbourhood V of a point a. Then it can be written, in a sufficiently
small neighbourhood U of a, as a power series

f(z) = f(a) +
1

1!
f ′(a)(z−a) +

1

2!
f ′′(a)(z−a)2 + · · ·+ 1

n!
fn(a)(z−a)n + . . . .

Proof. We have
1

ζ − z
=

1

ζ − a
· 1

1− z−a
ζ−a

. (∗)

Take a circle K with center a and radius r such that the associated disc
(the region of K) is contained in V . Choose a q with 0 < q < 1 and a
neighbourhood U of a sufficiently small such that for z ∈ U , |z − a| < rq.
Then we have

ζ ∈ K ⇒
∣∣∣∣z − aζ − a

∣∣∣∣ < q < 1. (∗∗)

Now we obtain for x ∈ U from (∗)

1

ζ − z
=

1

ζ − a

(
∞∑
n=0

(
z − a
ζ − a

)n)
and hence

f(ζ)

ζ − z
=
∞∑
n=0

f(ζ)

ζ − a

(
z − a
ζ − a

)n
.

The continuous function f is bounded on the compact circle K so that by
(∗∗) for a suitable A, ∣∣∣∣ f(ζ)

ζ − a

(
z − a
ζ − a

)n∣∣∣∣ < A

r
· qn

and hence by XVIII.4.5 the series
∑∞

n=0
f(ζ)
ζ−a

(
z−a
ζ−a

)n
uniformly converges and

we can use XXII.3.2 to obtain∫
K

f(ζ)

ζ − z
dζ =

∞∑
n=0

∫
K

f(ζ)

ζ − a

(
z − a
ζ − a

)n
dζ =

∞∑
n=0

(z − a)n
∫
K

f(ζ)

(ζ − a)n+1
dζ.
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Using Cauchy’s formula for the first integral and the formula from XXII.4.3
for the last one we conclude that

f(z) =
∞∑
n=0

f (n)(a)

n!
(z − a)n.

�

1.1.1. Notes. 1. Thus, all complex functions with derivatives can be
(locally) written as power series.

2. Compare the proof of 1.1 with its counterpart in real analysis. The
complex variant is actually much simpler: we just write 1

ζ−z as a suitable

power series and take the integrals of the individual summands (we just have
to know we are allowed to do that), and then we apply the Cauchy’s formula
(and its derivatives). Of course, Cauchy’s formula is a very strong tool, but
this is not the only reason. In a way, in the real context we are proving a more
general theorem: we have a lot of functions that have just a few derivatives
for which the theorem applies.

1.2. The exponential and goniometric functions. Using the tech-
niques of complex analysis we can show that the goniometric functions, the
existence of which we have so far only assumed, really exist. First define the
exponential function for complex variable as the power series

ez =
∞∑
n=1

1

n!
zn.

We already have it in the real context. The (real) logarithm has been proved
to exist (see XII.4), ex is its inverse and can be written as the (real) Taylor
series as above.

We will need the addition formula eu+v = euev for general complex u and
v. It is easy:

euev =

(
∞∑
n=0

1

n!
un

)(
∞∑
n=0

1

n!
vn

)
=
∞∑
n=0

( ∑
k+r=n

1

k!
uk

1

r!
vr

)
=

=
∞∑
n=0

(
n∑
k=0

1

k!

1

(n− k)!
ukv(n−k)

)
=
∞∑
n=0

1

n!

(
n∑
k=0

n!

k!(n− k)!
ukv(n−k)

)
=

=
∞∑
n=1

1

n!

(
n∑
k=0

(
n

k

)
ukv(n−k)

)
=
∞∑
n=1

1

n!
(u+ v)n.
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1.2.1. Now define (for general complex z)

sin z =
eiz − e−iz

2i
= z − z3

3!
+
z5

5!
− z7

7!
+ · · · , and

cos z =
eiz + e−iz

2i
= 1− z2

2!
+
z4

4!
− z6

6!
+ · · · .

We obviously have

lim
z→0

sin z

z
= 1

and the addition formulas are all we will need. We will prove, say, the formula
for sinus:

sinu cos v + sin v cosu =
1

4i
((eiu − e−iu)(eiv + e−iv) + (eiv − e−iv)(eiu + e−iu)) =

=
1

4i
(eiueiv + eiue−iv − e−iueiv − e−iue−iv + eiveiu + eive−iu − e−iveiu − e−ive−iu) =

=
1

4i
(2eiueiv − 2e−iue−iv) =

1

2i
(ei(u+v) − e−i(u+v)) = sin(u+ v).

2. Uniqueness theorem.

2.1. Recall that two polynomials of degree n agreeing in n+1 arguments
coincide. Viewing power series as “polynomials of countable degree” one may
for a moment surmise that two series coinciding in infinite many arguments
might coincide everywhere. This conjecture is of course immediately refused
by such examples as sinnx and constant 0.

But, in effect, this conjecture is not all that wrong. The statement holds
true if only the set of points of agreement has an accumulation point (recall
XVII.3.1).

2.2. First we will prove a local variant of the uniqueness theorem.

Lemma. Let f and g be holomorphic in an open set U and let c be in U .
Let cn 6= c, c = limn cn and f(cn) = g(cn) for all n. Then f coincides with g
in an neighbourhood of c.

Proof. It suffices to prove that if f(cn) = 0 for all n then f(z) = 0 in an
neighbourhood of c.
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Since c ∈ U , the derivative of f in c exists and hence by 1.1 we have in a
sufficiently small neighbourhood V of c

f(z) =
∞∑
k=0

ak(z − c)k.

If f is not constant zero in V , some of the ak is not 0. Let an be the first of
them. Thus,

f(z) = (z − c)n(an + an+1(z − c) + an+2(z − c)2 + · · · )

The series g(z) = an + an+1(z − c) + an+2(z − c)2 + · · · is a continuous
function and g(0) = an 6= 0 and hence g(z) 6= 0 in a neighbourhood W of c,
and f(z) = (z− c)ng(z) is in W equal to 0 only at c. But for sufficienly large
n, cn is in W , a contradiction. �

2.3. Connectedness: just a few facts. A non-empty metric space X
is said to be disconnected if there are disjoint non-empty open sets U , V such
that X = U ∪ V . It is connected if it is not disconnected.

X is said to be pathwise connected if for any two x, y ∈ X there is a
continuous mapping φ : 〈a, b〉 → X such that φ(a) = x and φ(b) = y.

Of course, we speak of connected resp. pathwise connected subset of
a metric space if the corresponding subspace is connected resp. pathwise
connected.

2.3.1. Notes. 1. For good reasons, the void space is defined to be
disconnected. But all our spaces will be non-void.

2. Since closed sets are precisely the complements of open sets, we see
that X is disconnected if there are disjoint non-empty closed sets A, B such
that X = A ∪B.

3. The pathwise connectedness means, of course, connecting of arbitrary
pairs of points by curves if we generalize the concept of curve from En to an
arbitrary metric space.

4. If we know that a space X is connected we can prove a statement V(x)
about elements x ∈ X by showing that the set

{x | V(x) holds}

is non-empty, open and closed.
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2.3.2. Fact. The compact interval 〈a, b〉 is connected.
Proof. Suppose that 〈a, b〉 = A∪B with A,B disjoint closed subsets, and

let, say, a ∈ A. Set
s = sup{x | 〈a, x〉 ⊆ A}.

Since there are x ∈ A arbitrary close to s, s ∈ A = A. If s < b there
are x ∈ B arbitrary close to s, making s ∈ B = B and contradicting the
disjointness. Thus, s = b and B has to be empty. �

2.3.3. Fact. Each pathwise connected space is connected.
Proof. Suppose X is pathwise connected but not connected. Then there

are non-empty open disjoint U , V such that X = U ∪ V . Pick x ∈ U and
y ∈ V . There is a continuous φ : 〈a, b〉 → X such that φ(a) = x and φ(b) = y.
Then U ′ = φ−1[U ], V ′ = φ−1[V ] are non-empty disjoint open sets such that
U ′ ∪ V ′ = 〈a, b〉 contradicting 2.3.2. �

2.3.4. Fact. An open subset of En is connected if and only if it is
pathwise connected.

Proof. Let U ⊆ En be non-empty open. For x ∈ U define

U(x) = {y ∈ U | ∃φ : 〈a, b〉 → U, φ(a) = x, ψ(b) = y}.

Sets U(x) and U(y) are either disjoint or equal (if z ∈ U(x) ∩ U(y) choose
oriented curves L1, L2 connecting x with z and z with y; then L1 + L2

from XXI.1.4 proves that y ∈ U(x) and using XXI.1.4 again we see that
U(y) ⊆ U(x)).

Further, each U(x) is open. Indeed let y ∈ U(x) and let L be an oriented
curve connecting x with y. Since U is open there is an ε > 0 such that
Ω(y, ε) ⊆ U . Now for an arbitrary z ∈ Ω(y, ε) we have the oriented line
segment K parametrized by ψ = (t 7→ y + t(z − y)) : 〈0, 1〉 → Ω(y, ε) and
hence L+K connecting x with z. Thus, Ω(y, ε) ⊆ U(x).

Now if U is not pathwise connected there are x, y with U(x) ∩ U(y) = ∅,
the set V =

⋃
{U(y) | y ∈ U, U(x) ∩ U(y) = ∅} is non-empty open and

U(x) ∪ V = U and U is not connected. �

2.4. Theorem. Let f and g be holomorphic in a connected open set U
and let there exist c and cn 6= c in U such that c = limn cn and f(cn) = g(cn)
for all n. Then f = g.

Proof. Set

V = {z | z ∈ U, f(u) = g(u) for all u in a neighbourhood of z}.
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Then V is by definition open and by 2.2 and the assumption on c it is not
empty. Now let zn ∈ V and limn z = z. Then by 2.2, z ∈ V so that V is also
closed, and hence V = U by connectedness (recall 2.3.1.4). �

3. Liouville’s Theorem and

Fundamental Theorem of Algebra.

3.1. Lemma. Let f be a complex function defined on a circle K with
radius r. If |f(z)| ≤ A for all z then∣∣∣∣∫

L

f(z)dz

∣∣∣∣ ≤ 8Aπr.

Proof. Let L be parametrized by φ : 〈0, 2π〉 → C defined by φ(t) =
c+ r cos t+ ir sin t so that φ′(t) = −r sin t+ ir cos t and hence |φ′1|, |φ′1| ≤ r.
Let f = f1 + if2. Then we have∣∣∣∣∫
L

f

∣∣∣∣ =

∣∣∣∣∫ 2π

0

f(φ(t))φ′(t)dt

∣∣∣∣ =

∣∣∣∣∫ 2π

0

f1φ
′
1 −

∫ 2π

0

f2φ
′
2 + i

∫ 2π

0

f1φ
′
2 − i

∫ 2π

0

f2φ
′
1

∣∣∣∣ ≤
≤
∣∣∣∣∫ 2π

0

f1φ
′
1

∣∣∣∣+

∣∣∣∣∫ 2π

0

f2φ
′
2

∣∣∣∣+

∣∣∣∣∫ 2π

0

f1φ
′
2

∣∣∣∣+

∣∣∣∣∫ 2π

0

f2φ
′
1

∣∣∣∣ ≤
≤
∫ 2π

0

|f1||φ′1|+
∫ 2π

0

|f2||φ′2|+
∫ 2π

0

|f1||φ′2|+
∫ 2π

0

|f2||φ′1| ≤

≤ 4

∫ 2π

0

Ardt = 4Ar

∫ 2π

0

dt = 4Ar2π.

�

Note. This estimate is very rough, but it will do for our purposes.

3.2. Theorem. (Liouville) If f is bounded and holomorphic in the whole
of C then it is constant.

Proof. By XXII.4.3 we have for an arbitrary circle K with center z

f ′(z) =
2!

2πi

∫
K

f(ζ)

(ζ − z)2
dζ.
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Let |f(ζ)| < A for all ζ. If we choose the circle K with diameter r we have
(ζ − z)2 = r2 for ζ on K, and hence∣∣∣∣ f(ζ)

(ζ − z)2

∣∣∣∣ < A

r2
.

Hence by lemma 3.1,

|f ′(z)| < 2!

2π
8
A

r2
πr =

8A

r
.

Since r can be chosen arbitrarily large we see that f ′(z) is constant zero, and
hence f is a constant. �

3.3. Theorem. (Fundamental Theorem of Algebra) Each polynomial p
of deg(p) > 0 with complex coefficients has a complex root.

Proof. Let a polynomial

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0

have no root. Then the holomorphic function

f(z) =
1

p(z)

is defined on the whole of C. Set

R = 2nmax{|a0|, |a1|, . . . , |an−1|, 1}.

Then we have for |z| ≥ R

|p(z)| ≥ |z|n − |an−1zn−1 + · · ·+ a1z + a0(z)| ≥

≥ |z|n − |z|n−11

2
R ≥ R|z|n−1 − |z|n−11

2
R = |z|n−11

2
R ≥ 1

2
Rn.

Thus,

|z| ≥ R ⇒ |f(z)| ≤ 2

Rn
.

Finally, the set {z | |z| ≤ R} is compact and hence the continuous function
f is bounded also for |z| ≤ R and hence everywhere. Thus, by Liouville’s
Theorem, f is constant and hence so is also p. �
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4. Notes on conformal maps.

4.1. Recall from analytic geometry the formula for cosinus of the angle
α between two (non-zero) vectors u, v

cosα =
uv

‖u‖‖v‖
.

In view of this formula we will understand in this section under the expression
“preserving the angle between u and v” preserving the value uv

‖u‖‖v‖ .

4.2. Let U be a connected open subset of C. We will be mostly interested
in holomorphic functions f and hence we will use (as before) the notation
f(z) = f(x + iy) = P (x, y) + iQ(x, y) for any f : U → C with partial
derivatives. In this notation we have

4.2.1. Recall the Jacobian from XV.4 and also recall that a mapping
f : U → C with partial derivatives is said to be regular if

D(f)

D(z)
=

D(P,Q)

D(x, y)
= det

(
∂P
∂x
, ∂P
∂y

∂Q
∂x
, ∂Q
∂y

)
=
∂P

∂x

∂Q

∂y
− ∂Q

∂x

∂P

∂y
6= 0. (reg)

4.2.2. Let f : U → C be a holomorphic function. Then by the Cauchy-
Riemann equations the condition (reg) transforms to

∂P

∂x

∂Q

∂y
− ∂Q

∂x

∂P

∂y
=
∂P

∂x

2

+
∂P

∂y

2

=
∂Q

∂x

2

+
∂Q

∂y

2

and we observe that

A holomorphic f is regular on an open set U iff for all z ∈ U , f ′(z) 6= 0.

4.3. A mapping f : U → C is said to be conformal if it is regular and if
it preserves angles, by which we mean preserving the angles between tangent
vectors of curves when transformed by f .

We will show that conformal regular mappings are closely connected with
the holomorphic ones.

4.4. Let φ, ψ be curves in U . A regular mapping f : U → C transforms
them to curves

Φ = f ◦ φ and Ψ = f ◦ ψ
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in C.

4.4.1. Lemma. Let f be a holomorphic mapping. Then for the scalar
product uv of tangent vectors we have (the dot · designates the multiplication
of real numbers)

Φ′Ψ′ =
D(f)

D(z)
· φ′ψ′.

Proof. Using the Cauchy-Riemann equations we obtain

Φ′1Ψ
′
1 + Φ′2Ψ

′
2 =

(
∂P

∂x
φ′1 +

∂P

∂y
φ′2

)(
∂P

∂x
ψ′1 +

∂P

∂y
ψ′2

)
+

+

(
−∂P
∂y

φ′1 +
∂P

∂x
φ′2

)(
−∂P
∂y

ψ′1 +
∂P

∂x
ψ′2

)
=

= (φ′1ψ
′
1 + φ′2ψ

′
2)

((
∂P

∂x

)2

+

(
∂P

∂y

)2
)
.

�

4.4.2. Theorem. A holomorphic mapping f : U → C such that f ′(z) 6=
0 for all z ∈ U is conformal.

Proof. From Lemma 4.4.1 we also have for the norm that ‖Φ′‖2 = Ψ′Ψ′ =
D(f)
D(z)
· φ′φ′ = D(f)

D(z)
‖φ′‖2 so that

Φ′Ψ′

‖Φ′‖‖Ψ′‖
=

D(f)
D(z)

φ′ψ′√
D(f)
D(z)
‖φ′‖

√
D(f)
D(z)
‖ψ′‖

=
φ′ψ′

‖φ′‖‖ψ′‖
.

Recall 4.1. �

Note. The condition of regularity, that is, f ′(z) 6= 0, is essential. For
instance the mapping f(z) = z2 redoubles the angles at the point z = 0.

4.5. Is, on the other hand, a conformal mapping necessarily a holomor-
phic one? No, because for instance the mapping

conj = (z 7→ z) : C→ C

is conformal (even isometric) but not holomorphic (recall XXII.1.2). But if
would be a rather cheap answer, if we would leave it at that. In fact, nothing
worse than an intervence of conj can happen. We have

Theorem. Let U be an open subset of C and let f : U → C be a regular
mapping. Then the following statements are equivalent.
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(1) f is conformal.

(2) f preserves orthogonality.

(3) Either f or conj ◦f is holomorphic.

Proof. (1)⇒(2) is trivial and (3)⇒(1) is in 4.4.2 (the modification by the
mapping conj is obvious).

(2)⇒(3): Write (u, v) for the tangent vector φ′(t) of a parametrization of
a curve φ. Transformed by f it becomes(

∂P

∂x
u+

∂P

∂y
v,
∂Q

∂x
u+

∂Q

∂y
v

)
.

Now consider for (u, v) two orthogonal vectors (a, b) and (−b, a). Then the
scalar product of the transformed vectors(

∂P

∂x
a+

∂P

∂y
b,
∂Q

∂x
a+

∂Q

∂y
b

)(
−∂P
∂x

b+
∂P

∂y
a,−∂Q

∂x
b+

∂Q

∂y
a

)
=

= (a2 − b2)
(
∂P

∂x

∂P

∂y
+
∂Q

∂x

∂Q

∂y

)
+

+ ab

((
∂P

∂y

)2

+

(
∂Q

∂y

)2

−
(
∂P

∂x

)2

−
(
∂Q

∂x

)2
)

should be zero. In paricular for the vector (a, b) = (1, 0) this yields

∂P

∂x

∂P

∂y
+
∂Q

∂x

∂Q

∂y
= 0 (1)

and for (a, b) = (1, 1) we obtain(
∂P

∂y

)2

+

(
∂Q

∂y

)2

−
(
∂P

∂x

)2

−
(
∂Q

∂x

)2

= 0. (2)

Now since f is regular, some of the partial derivatives, say ∂Q
∂x

(z), is not zero
(if we concentrate to a particular argument). Set

λ =
∂P

∂x

(
∂Q

∂x

)−1
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so that we have ∂P
∂x

= λ∂Q
∂x

and the equation (1) yields λ∂P
∂y

+ ∂Q
∂y

= 0, and

substituting these two equalities into (2) we obtain that

(1 + λ2)

(
∂P

∂y

)2

= (1 + λ2)

(
∂Q

∂x

)2

and since λ is real, 1 + λ2 6= 0 and we see that(
∂P

∂y

)2

=

(
∂Q

∂x

)2

.

Now either ∂P
∂y

= −∂Q
∂x

and then we obtain from (1) that ∂P
∂x

= ∂Q
∂y

, and f
satisfies the Cauchy-Riemann equations; since the partial derivatives are con-
tinuous, f is holomorphic. Or ∂P

∂y
= ∂Q

∂x
and then (1) yields that ∂P

∂x
= −∂Q

∂y
.

Then by the Chain Rule, conj ◦ f satisfies the Cauchy-Riemann equations
and hence it is holomorphic. �
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