Numbers.

Natural numbers
$\mathbb{N} 0$, successor, induction arithmetic: addition, multiplication, $1=0$ '

$$
\begin{array}{lr}
a+0=a & a \cdot 1=a \\
(a+b)+c=a+(b+c) & (a \cdot b) \cdot c=a \cdot(b \cdot c) \\
a+b=b+a & a \cdot b=b \cdot a \\
(a+b) c=a c+b c &
\end{array}
$$

Morover:
Order $a \leq b \quad(\exists x, a+x=b)$

$$
\begin{aligned}
& a \leq a \text { and } a \leq b \& b \leq a \text { only if } a=b \\
& a \leq b \text { and } b \leq c \Rightarrow a \leq c \\
& \forall a, b, \text { either } a \leq b \text { or } b \leq a \\
& a \leq b \Rightarrow a+c=b+c \\
& a \leq b \Rightarrow a \cdot c=b \cdot c
\end{aligned}
$$

Peano axioms.

$n \neq 0$ is m^{\prime} of precisely one m
0 is not a successor
If $A(0)$ and $A(n) \Rightarrow A\left(n^{\prime}\right)$ then $\forall n A(n)$
($A(n) \equiv$ "Statement A holds for $n ")$
$n+0=0, \quad n+m^{\prime}=(n+m)^{\prime}$
$n 0=0, \quad n m^{\prime}=n m+n$
Examples: 1. Associativity of addition:
$(m+n)+0=m+n=(m+0)+n, \quad m+\left(n+p^{\prime}\right)=$ $m+(n+p)^{\prime}=(m+(n+p))^{\prime}=((m+n)+p)^{\prime}=(m+n)+p^{\prime}$
2. $0+n=n$:
$0+0=0, \quad 0+n^{\prime}=(0+n)^{\prime}=n^{\prime}$
3. Set $1=0^{\prime}$. Then $n^{\prime}=n+1$ and $n^{\prime}=1+n$:
$0^{\prime}=1=1+0=0+1, \quad n^{\prime}=(n+0)^{\prime}=n+0^{\prime}=$ $n+1, \quad 1+n^{\prime}=(1+n)^{\prime}=\left(n^{\prime}\right)^{\prime}$
4. Commutativity of addition:
$m+n^{\prime}=(m+n)^{\prime}=(n+m)^{\prime}=n+m^{\prime}=n+(1+m)=$ $(n+1)+m=n^{\prime}+m$
5. Distributivity:

$$
\begin{aligned}
& \quad(m+n) p^{\prime}=(m+n) p+m+n=m p+n p+m+n= \\
& (m p+m)+(n p+n)=m p^{\prime}+n p^{\prime}
\end{aligned}
$$

Integers

$\overline{\mathbb{Z}}$: arithmetic: addition, 0 , subtraction, multiplication,
1

$$
\begin{array}{lr}
a+0=a & a 1=a \\
(a+b)+c=a+(b+c) & (a b) c=a(b c) \\
a+b=b+a & a b=b a \\
(a+b) c=a c+b c & \\
\forall a \exists b, a+b=0 \quad(\mathrm{NEW}) &
\end{array}
$$

Morover: order again

$$
\begin{aligned}
& a \leq a \text { and } a \leq b \& b \leq a \text { only if } a=b \\
& a \leq b \text { and } b \leq c \Rightarrow a \leq c \\
& \forall a, b, \text { either } a \leq b \text { or } b \leq a \\
& a \leq b \Rightarrow a+c=b+c \\
& a \leq b \text { and } 0 \leq c \Rightarrow a c \leq b c \quad(M O D I F I E D)
\end{aligned}
$$

Rationals

\mathbb{Q} : arithmetic: addition, 0 , subtraction, multiplication, 1, division

Order

$$
\begin{array}{lr}
a+0=a & a 1=a \\
(a+b)+c=a+(b+c) & (a b) c=a(b c) \\
a+b=b+a & a b=b a \\
(a+b) c=a c+b c \\
\forall a \exists b, a+b=0 \\
\forall a \neq 0 \exists b, a b=1 \quad(\mathrm{NEW}) \\
a \leq a \text { and } a \leq b \& b \leq a \text { only if } a=b \\
a \leq b \text { and } b \leq c \Rightarrow a \leq c \\
\forall a, b, \text { either } a \leq b \text { or } b \leq a & \\
a \leq b \Rightarrow a+c=b+c \\
a \leq b \text { and } 0 \leq c \Rightarrow a c \leq b c
\end{array}
$$

(ORDERED FIELD)

Reals

\mathbb{R} : arithmetic: addition, 0 , subtraction, multiplication,
1, division
Order

$$
\begin{array}{lr}
a+0=a & a 1=a \\
(a+b)+c=a+(b+c) & (a b) c=a(b c) \\
a+b=b+a & a b=b a \\
(a+b) c=a c+b c & \\
\forall a \exists b, a+b=0 & \\
\forall a \neq 0 \exists b, a b=1 &
\end{array}
$$

$$
\begin{aligned}
& a \leq a \text { and } a \leq b \& b \leq a \text { only if } a=b \\
& a \leq b \text { and } b \leq c \Rightarrow a \leq c \\
& \forall a, b, \text { either } a \leq b \text { or } b \leq a \\
& a \leq b \Rightarrow a+c=b+c \\
& a \leq b \text { and } 0 \leq c \Rightarrow a c \leq b c
\end{aligned}
$$

and each non-void bounded subset

Notes.

1. We work with reals assuming exactly the properties just listed.
2. Complex numbers constitute a field, but cannot be (linearly) ordered.
3. Reals are given more structure, namely distance $|x-y|$, making them to Euclidean line.
4. The term complete has two senses. In order theory it refers to the existence of suprema of every subset of an ordered set. In metric spaces it refers to convergence of all Cauchy sequences. Thus for instance every Euclidean space (including the complex plane) is complete in this second sense without being ordered at all.
5. Reals are complete in both senses, that is, strictly speaking they are complete in the metric sense and almost complete in the order one (there is the proviso of non-void bounded; this can be helped introducing $+\infty$ and $-\infty$). The completeness of $(\mathbb{R},|x-y|)$ is in the BolzanoCauchy theorem.

Observation. Each Cauchy sequence is bounded.
Proof. Consider n_{0} such that for all $m, n \geq n_{0}, \mid x_{m}-$ $x_{n} \mid<1$. Set $K=\max \left\{\left|x_{1}-x_{n}\right| \mid n \leq n_{0}\right\}$. Then for every n, $\left|x_{1}-x_{n}\right|<K+1$.

Lemma. Let $\left(x_{n}\right)_{n}$ be Cauchy and let a subsequence $\left(x_{k_{n}}\right)_{n}$ converge to x. Then $\lim _{n} x_{n}=x$.

Proof. For an $\varepsilon>0$ choose an n_{1} such that for $n \geq n_{1}$, $\left|x_{k_{n}}-a\right|<\frac{\varepsilon}{2}$, and an n_{2} such that for $m, n \geq n_{1}, \mid x_{n}-$ $x_{m} \left\lvert\,<\frac{\varepsilon}{2}\right.$. Then, as $k_{n} \geq n$, for $n \geq n_{0}=\max \left(n_{1}, n_{2}\right)$, $\left|x_{n}-a\right| \leq\left|x_{n}-x_{k_{n}}\right|+\left|x_{k_{n}}-a\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.

Corollary. (Bolzano-Cauchy) Each Cauchy sequence in \mathbb{R} converges. Thus, \mathbb{R} is a complete metric space.

Example:

Absolutely convergent series.

Suppose we know that $\sum_{n=1}^{\infty} b_{n}$ converges (for instance, $b_{n}=B q^{n}$ with $0<q<1$), and that $\left|a_{n}\right| \leq b_{n}$ for all n. Then for the partial sums $s_{n}=\sum_{k=1}^{n} a_{k}$ and $t_{n}=$ $\sum_{k=1}^{n} b_{k}$ we have

$$
\begin{aligned}
\left|s_{m}-s_{n}\right| & =\left|\sum_{k=n+1}^{m} a_{n}\right| \leq \sum_{k=n+1}^{m}\left|a_{n}\right| \leq \\
& \leq \sum_{k=n+1}^{m} b_{n}=t_{m}-t_{n}
\end{aligned}
$$

$\left(t_{n}\right)_{n}$ converges, hence it is Cauchy, hence $\left(s_{n}\right)_{n}$ is Cauchy, and hence $\left(s_{n}\right)_{n}$ converges.
Thus we know that

$$
\text { a finite sum } \sum_{n=1}^{\infty} a_{n} \text { exists, }
$$

without having the slightest idea about its value.

Neighborhoods, open sets.
$\Omega(x, \varepsilon)=\{y \mid d(x, y)<\varepsilon\}$
U is a nbhood of $x \equiv \exists \varepsilon, \Omega(x, \varepsilon) \subseteq U$
U is open $\equiv U$ is a neighborhood of each of its points.
Fact. Each $\Omega(x, \varepsilon)$ is open.
(If $y \in \Omega(x, \varepsilon), d(x, y)<\varepsilon$. Choose $\eta>0, \eta<\varepsilon-$ $d(x, y)$. If $z \in \Omega(y, \eta)$ then $d(x, z) \leq d(x, y)+d(y, z)<$ $d(x, y)+\eta<\varepsilon$, hence $z \in \Omega(x, \varepsilon)$.)

Image and preimage.

$f[A]=\{f(x) \mid x \in A\}$,
$f^{-1}[B]=\{x \mid f(x) \in B\}$
Facts. $f[A] \subseteq B$ iff $A \subseteq f^{-1}[B]$,

$$
f\left[f^{-1}[B]\right] \subseteq B, \quad A \subseteq f^{-1}[f[A]] .
$$

Theorem. TFAE for $f: X \rightarrow Y$
(1) f is continuous.
(2) for every $x \in X$ and every neigborhood V of $f(x)$ exists U neighborhood of x such that $f[U] \subseteq V$.
(3) for every V open in $Y, f^{-1}[V]$ is open in X.

Proof. (1) $\Leftrightarrow(2): f[\Omega(x, \delta)] \subseteq \Omega(f(x), \varepsilon)$ says precisely that

$$
d(x, y)<\delta \Rightarrow d(f(x), f(y))<\varepsilon .
$$

$(2) \Rightarrow(3)$: Let V be open and let $x \in f^{-1}[V]$. Then $f(x) \in V, V$ is a neighborhood of $f(x)$ and there is a neighborhood U of x such that $f[U] \subseteq V$. Then $x \in$ $U \subseteq f^{-1}[V]$ and $f^{-1}[V]$ is a neighborhood of x.
$(3) \Rightarrow(2)$: Let V be a neighborhood of $f(x)$, let $f(x) \in$ $W=\Omega(f(x), \varepsilon) \subseteq V . W$ is open, hence $U=f^{-1}[W]$ is open, $x \in U$, and $f[U]=f\left[f^{-1}[W]\right] \subseteq W \subseteq V$.

Homeomorphism.

Continuous $f:(X, d) \rightarrow\left(Y, d^{\prime}\right)$ such that there is a continuous $g:\left(Y, d^{\prime}\right) \rightarrow(X, d)$ with

$$
f \cdot g=\operatorname{id}_{Y} \quad \text { and } \quad g \cdot f=\operatorname{id}_{X} .
$$

Like isomorphism in algebras and elsewhere.
Example.
$\tan :(-\pi, \pi) \rightarrow \mathbb{R}, \arctan : \mathbb{R} \rightarrow(-\pi, \pi)$
Every open interval (bounded or
unbounded) is homeomorphic with \mathbb{R}.
Equivalent metrics d, d^{\prime} on X :
id : $(X, d) \rightarrow\left(X, d^{\prime}\right)$ is a homeomorphism

Example.

$d(x, y)=|\arctan (x)-\arctan (y)|$
on \mathbb{R} is equivalent with the standard $|x-y|$.

Topological concepts: concepts preserved under

 homeomorphism;on a given set: independent on choice of equivalent metric.
Examples. Topological:
continuity
convergence
neighborhood (although $\Omega(x, \varepsilon)$ is not)
open set
closed set
closure
compactness
Not topological:
boundedness
Cauchy property
completeness
(a bounded open interval (a, b) is bounded, \mathbb{R} not. \mathbb{R} is complete, (a, b) is not.)

Strongly equivalent metrics.

Strongly quivalent metrics d, d^{\prime} on X : exist $\alpha, \beta>0$ such that

$$
\forall x, y, \alpha d(x, y) \leq d^{\prime}(x, y) \leq \beta d(x, y)
$$

Strong equivalence preserves also the boundedness, Cauchy property, or completeness mentioned above.

In particular the metrics on \mathbb{E}_{n}

$$
\begin{aligned}
& d\left(\left(x_{i}\right)_{i},\left(y_{i}\right)_{i}\right)=\sqrt{\sum_{i}\left(x_{i}-y_{i}\right)^{2}} \\
& \lambda\left(\left(x_{i}\right)_{i},\left(y_{i}\right)_{i}\right)=\sum_{i}\left|x_{i}-y_{i}\right| \\
& \sigma\left(\left(x_{i}\right)_{i},\left(y_{i}\right)_{i}\right)=\max _{i}\left|x_{i}-y_{i}\right|
\end{aligned}
$$

are strongly equivalent.

Similarly the variants of distance in (finite) products:

$$
\begin{aligned}
d\left(\left(x_{i}\right)_{i},\left(y_{i}\right)_{i}\right) & =\sqrt{\sum_{i} d_{i}\left(x_{i}, y_{i}\right)^{2}} \\
\lambda\left(\left(x_{i}\right)_{i},\left(y_{i}\right)_{i}\right) & =\sum_{i} d_{i}\left(x_{i}, y_{i}\right) \\
\sigma\left(\left(x_{i}\right)_{i},\left(y_{i}\right)_{i}\right) & =\max _{i} d_{i}\left(x_{i}, y_{i}\right)
\end{aligned}
$$

are strongly equivalent:
Obviously we have

$$
\begin{aligned}
& \max _{i} d_{i}\left(x_{i}, y_{i}\right) \leq \sqrt{\sum_{i} d_{i}\left(x_{i}, y_{i}\right)^{2}} \\
& \max _{i} d_{i}\left(x_{i}, y_{i}\right) \leq \sum_{i} d_{i}\left(x_{i}, y_{i}\right) \\
& \sqrt{\sum_{i} d_{i}\left(x_{i}, y_{i}\right)^{2}} \leq \sqrt{n} \max _{i} d_{i}\left(x_{i}, y_{i}\right) \\
& \sum_{i} d_{i}\left(x_{i}, y_{i}\right) \leq n \max _{i} d_{i}\left(x_{i}, y_{i}\right)
\end{aligned}
$$

A reformulation of compactness. Accumulation points.

x is an accumulation point of M in (X, d) if for every $\operatorname{nbhood} U$ of $x, U \cap M$ is infinite.
(Equivalently, if every nbhood U of x contains a $y \neq x$.)
Proposition. (X, d) is compact iff every infinite $M \subseteq X$ has an accumulation point.

Proof. I. Let (X, d) be compact, $M \subseteq X$ infinite. Choose a sequence $\left(x_{n}\right)_{n}$ with all the elements $x_{n} \in M$ distinct. Let $\left(x_{k_{n}}\right)_{n}$ be a convergent subsequence. Then $x=\lim _{n} x_{k_{n}}$ is obviously an accumulation point of M.
II. Conversely, let $\left(x_{n}\right)_{n}$ be in X. If $\left\{x_{n} \mid n=1,2, \ldots\right\}$ is finite, there is a constant subsequence. Else $M=\left\{x_{n} \mid n=\right.$ $1,2, \ldots\}$ has an accumulation point x, and every $M \cap$ $\Omega\left(x, \frac{1}{n}\right)$ is infinite. Choose $x_{k_{1}} \in M \cap \Omega(x, 1)$. If we have chosen $x_{k_{1}}$ with $k_{1}<k_{2}<\cdots<k_{n}$ such that $x_{k_{r}} \in M \cap \Omega\left(x, \frac{1}{r}\right)$ choose $x_{k_{n+1}} \in M \cap \Omega\left(x, \frac{1}{n+1}\right)$ with $k_{n+1}>k_{n}$ (we have still infinitely many candidates). Then $\lim _{n} x_{k_{n}}=x$.

Details.

Text:
Chapter I, Section 2
Chapter II, Section 3
Chapter III, Section 2
Chapter XIII, Sections 2, 3, 4, 6 and 7

