
Numbers.
Natural numbers
N 0, successor, induction
arithmetic: addition, multiplication, 1=0’

a + 0 = a a · 1 = a

(a + b) + c = a + (b + c) (a · b) · c = a · (b · c)
a + b = b + a a · b = b · a
(a + b)c = ac + bc

Morover:
Order a ≤ b (∃x, a + x = b)

a ≤ a and a ≤ b & b ≤ a only if a = b

a ≤ b and b ≤ c ⇒ a ≤ c

∀a, b, either a ≤ b or b ≤ a

a ≤ b ⇒ a + c = b + c

a ≤ b ⇒ a · c = b · c
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Peano axioms.
n 6= 0 is m′ of precisely one m
0 is not a successor
IfA(0) andA(n)⇒ A(n′) then ∀nA(n)

(A(n)≡ “Statement A holds for n”)

n + 0 = 0, n + m′ = (n + m)′

n0 = 0, nm′ = nm + n

Examples: 1. Associativity of addition:

(m+n) + 0 = m+n = (m+ 0) +n, m+ (n+ p′) =

m+(n+p)′ = (m+(n+p))′ = ((m+n)+p)′ = (m+n)+p′

2. 0 + n = n:

0 + 0 = 0, 0 + n′ = (0 + n)′ = n′

3. Set 1 = 0′. Then n′ = n + 1 and n′ = 1 + n:

0′ = 1 = 1 + 0 = 0 + 1, n′ = (n + 0)′ = n + 0′ =

n + 1, 1 + n′ = (1 + n)′ = (n′)′

4. Commutativity of addition:

m+n′ = (m+n)′ = (n+m)′ = n+m′ = n+(1+m) =

(n + 1) + m = n′ + m

5. Distributivity:

(m+n)p′ = (m+n)p+m+n = mp+np+m+n =

(mp + m) + (np + n) = mp′ + np′
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Integers

Z: arithmetic: addition, 0, subtraction, multiplication,

1
a + 0 = a a1 = a

(a + b) + c = a + (b + c) (ab)c = a(bc)

a + b = b + a ab = ba

(a + b)c = ac + bc

∀a∃b, a + b = 0 (NEW)

Morover: order again

a ≤ a and a ≤ b & b ≤ a only if a = b

a ≤ b and b ≤ c ⇒ a ≤ c

∀a, b, either a ≤ b or b ≤ a

a ≤ b ⇒ a + c = b + c

a ≤ b and 0 ≤ c ⇒ ac ≤ bc (MODIFIED)
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Rationals

Q: arithmetic: addition, 0, subtraction, multiplication,

1, division

Order

a + 0 = a a1 = a

(a + b) + c = a + (b + c) (ab)c = a(bc)

a + b = b + a ab = ba

(a + b)c = ac + bc

∀a∃b, a + b = 0

∀a 6= 0∃b, ab = 1 (NEW)

a ≤ a and a ≤ b & b ≤ a only if a = b

a ≤ b and b ≤ c ⇒ a ≤ c

∀a, b, either a ≤ b or b ≤ a

a ≤ b ⇒ a + c = b + c

a ≤ b and 0 ≤ c ⇒ ac ≤ bc

(ORDERED FIELD)
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Reals

R : arithmetic: addition, 0, subtraction, multiplication,

1, division

Order

a + 0 = a a1 = a

(a + b) + c = a + (b + c) (ab)c = a(bc)

a + b = b + a ab = ba

(a + b)c = ac + bc

∀a∃b, a + b = 0

∀a 6= 0∃b, ab = 1

a ≤ a and a ≤ b & b ≤ a only if a = b

a ≤ b and b ≤ c ⇒ a ≤ c

∀a, b, either a ≤ b or b ≤ a

a ≤ b ⇒ a + c = b + c

a ≤ b and 0 ≤ c ⇒ ac ≤ bc

and each non-void bounded subset

has a supremum. (NEW)

(COMPLETELY ORDERED FIELD)
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Notes.

1. We work with reals assuming exactly the properties

just listed.

2. Complex numbers constitute a field, but cannot be

(linearly) ordered.

3. Reals are given more structure, namely distance

|x− y|, making them to Euclidean line.

4. The term complete has two senses. In order theory

it refers to the existence of suprema of every subset of an

ordered set. In metric spaces it refers to convergence of

all Cauchy sequences. Thus for instance every Euclidean

space (including the complex plane) is complete in this

second sense without being ordered at all.
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5. Reals are complete in both senses, that is, strictly

speaking they are complete in the metric sense and almost

complete in the order one (there is the proviso of non-void

bounded; this can be helped introducing +∞ and −∞).

The completeness of (R, |x − y|) is in the Bolzano-

Cauchy theorem.
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Observation. Each Cauchy sequence is bounded.

Proof. Consider n0 such that for all m,n ≥ n0, |xm−
xn| < 1. Set K = max{|x1 − xn| |n ≤ n0}. Then for

every n, |x1 − xn| < K + 1.

Lemma. Let (xn)n be Cauchy and let a subsequence

(xkn)n converge to x. Then limn xn = x.

Proof. For an ε > 0 choose an n1 such that for n ≥ n1,

|xkn − a| < ε
2, and an n2 such that for m,n ≥ n1,|xn −

xm| < ε
2. Then, as kn ≥ n, for n ≥ n0 = max(n1, n2),

|xn − a| ≤ |xn − xkn| + |xkn − a| < ε
2 + ε

2 = ε.

Corollary. (Bolzano-Cauchy) Each Cauchy sequence

in R converges. Thus, R is a complete metric space.
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Example:

Absolutely convergent series.

Suppose we know that
∑∞

n=1 bn converges (for instance,

bn = Bqn with 0 < q < 1), and that |an| ≤ bn for all

n. Then for the partial sums sn =
∑n

k=1 ak and tn =∑n
k=1 bk we have

|sm − sn| = |
m∑

k=n+1

an| ≤
m∑

k=n+1

|an| ≤

≤
m∑

k=n+1

bn = tm − tn

(tn)n converges, hence it is Cauchy, hence (sn)n is Cau-

chy, and hence (sn)n converges.

Thus we know that

a finite sum
∑∞

n=1 an exists,

without having the slightest idea about its value.
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Neighborhoods, open sets.

Ω(x, ε) = {y | d(x, y) < ε}
U is a nbhood of x ≡ ∃ε,Ω(x, ε) ⊆ U

U is open ≡ U is a neighborhood of each of its points.

Fact. Each Ω(x, ε) is open.

(If y ∈ Ω(x, ε), d(x, y) < ε. Choose η > 0, η < ε −
d(x, y). If z ∈ Ω(y, η) then d(x, z) ≤ d(x, y) + d(y, z) <

d(x, y) + η < ε, hence z ∈ Ω(x, ε).)

Image and preimage.

f [A] = {f (x) |x ∈ A},
f−1[B] = {x | f (x) ∈ B}
Facts. f [A] ⊆ B iff A ⊆ f−1[B],

f [f−1[B]] ⊆ B, A ⊆ f−1[f [A]].
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Theorem. TFAE for f : X → Y

(1) f is continuous.

(2) for every x ∈ X and every neigborhood V of f (x)

exists U neighborhood of x such that f [U ] ⊆ V .

(3) for every V open in Y , f−1[V ] is open in X.

Proof. (1)⇔(2): f [Ω(x, δ)] ⊆ Ω(f (x), ε) says precisely

that

d(x, y) < δ ⇒ d(f (x), f (y)) < ε.

(2)⇒ (3): Let V be open and let x ∈ f−1[V ]. Then

f (x) ∈ V , V is a neighborhood of f (x) and there is a

neighborhood U of x such that f [U ] ⊆ V . Then x ∈
U ⊆ f−1[V ] and f−1[V ] is a neighborhood of x.

(3)⇒(2): Let V be a neighborhood of f (x), let f (x) ∈
W = Ω(f (x), ε) ⊆ V . W is open, hence U = f−1[W ] is

open, x ∈ U , and f [U ] = f [f−1[W ]] ⊆ W ⊆ V .
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Homeomorphism.

Continuous f : (X, d) → (Y, d′) such that there is a

continuous g : (Y, d′)→ (X, d) with

f · g = idY and g · f = idX .

Like isomorphism in algebras and elsewhere.

Example.

tan : (−π, π)→ R, arctan : R→ (−π, π)

Every open interval (bounded or

unbounded) is homeomorphic with R.

Equivalent metrics d, d′ on X :

id : (X, d)→ (X, d′) is a homeomorphism

Example.

d(x, y) = | arctan(x)− arctan(y)|
on R is equivalent with the standard |x− y|.
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Topological concepts: concepts preserved under

homeomorphism;

on a given set: independent on choice of equivalent metric.

Examples. Topological:

continuity

convergence

neighborhood (although Ω(x, ε) is not)

open set

closed set

closure

compactness

Not topological:

boundedness

Cauchy property

completeness

(a bounded open interval (a, b) is bounded, R not. R is

complete, (a, b) is not.)
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Strongly equivalent metrics.

Strongly quivalent metrics d, d′ on X : exist α, β > 0

such that

∀x, y, αd(x, y) ≤ d′(x, y) ≤ βd(x, y)

Strong equivalence preserves also the boundedness, Cau-

chy property, or completeness mentioned above.

In particular the metrics on En

d((xi)i, (yi)i) =

√∑
i

(xi − yi)2

λ((xi)i, (yi)i) =
∑
i

|xi − yi|

σ((xi)i, (yi)i) = max
i
|xi − yi|

are strongly equivalent.
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Similarly the variants of distance in (finite) products:

d((xi)i, (yi)i) =

√∑
i

di(xi, yi)2

λ((xi)i, (yi)i) =
∑
i

di(xi, yi)

σ((xi)i, (yi)i) = max
i
di(xi, yi)

are strongly equivalent:

Obviously we have

max
i
di(xi, yi) ≤

√∑
i

di(xi, yi)2

max
i
di(xi, yi) ≤

∑
i

di(xi, yi)√∑
i

di(xi, yi)2 ≤
√
nmax

i
di(xi, yi)∑

i

di(xi, yi) ≤ nmax
i
di(xi, yi)
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A reformulation of compactness. Accumulation

points.

x is an accumulation point of M in (X, d) if for every

nbhood U of x, U ∩M is infinite.

(Equivalently, if every nbhood U of x contains a y 6= x.)

Proposition. (X, d) is compact iff every infinite

M ⊆ X has an accumulation point.

Proof. I. Let (X, d) be compact, M ⊆ X infinite.

Choose a sequence (xn)n with all the elements xn ∈ M
distinct. Let (xkn)n be a convergent subsequence. Then

x = limn xkn is obviously an accumulation point of M .

II. Conversely, let (xn)n be in X . If {xn |n = 1, 2, . . . }
is finite, there is a constant subsequence. ElseM = {xn |n =

1, 2, . . . } has an accumulation point x, and every M ∩
Ω(x, 1n) is infinite. Choose xk1 ∈ M ∩ Ω(x, 1). If we

have chosen xk1 with k1 < k2 < · · · < kn such that

xkr ∈ M ∩ Ω(x, 1r) choose xkn+1 ∈ M ∩ Ω(x, 1
n+1) with

kn+1 > kn (we have still infinitely many candidates).

Then limn xkn = x.
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Details.

Text:

Chapter I, Section 2

Chapter II, Section 3

Chapter III, Section 2

Chapter XIII, Sections 2, 3, 4, 6 and 7
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