Repetition.

Multivariable Riemann integral.
Until the theorem of existence of inte-
oral for continuous functions everything
went smoothly.

An n-dimensional compact interval (a
brick) in E,, is

J = {ay,b1) x -+ X {an,bn).
A partition of J is a sequence P =
(PL, ..., P™) of partitions
PJ a; =10 <tj1 <---< tj,nj—l < tj,nj = bj
Bricks of the partition P are the

(i D) ¥ X (s tgip+1)
and
B(P)

is the set of all the bricks of P.
It is an almost disjoint decomposition of .J.
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Mesh of a partition P. For J =
(r1,81) X ==+ X {1y, Sp):

diam(J) = max(s; — ;);
(4

and the mesh of P is:
pu(P) = max{diam(B) | B € B(P)}.

Refinement. A partition Q = (Q', ..., Q")
refines a partition P = (PL, ..., P")if
every ()7 refines P/.

Again, trivially, for any two partitions
P, () of an n-dimensional compact in-
terval J there is a common refinement.



For f:J — R on J set
m(f, B) =inf{f(x)|x € B} and
M(f, B) = sup{ f(x) | x € B},

and for a partition P of J and a boun-
ded function f : J — R set

s(f,P) =" {m(f,B)-vol(B)| B € B(P)},
S(f,P) =) {M(f,B)-vol(B)| B € B(P)}.

FEasily, using a common reinement, we
obtain

Proposition. Let P, () be arbitrary
partitions of J. Then we have

s(f, P) < S(f, Q).



Hence we can define the lower Riemann
integral

/ f(x)dx = sup{s(f, P)| P a partition};
J

and the upper one

/ f(x)dx = inf{S(f, P)| P a partition},
J

and if they are equal we call the com-
mon value the Riemann integral

/J F(x)dx or simply /J /

Another notation:

/fa:l,... n)dxy, ... Ty

/ f(xla e 7In)dx1dx2 Tt dxn
J

4



Proposition. Riemann integral [ 7 f(x)dx
exists if and only if for every € > 0
there 1s a partition P such that

S(f,P)— s(f,P) <e.

From this (and uniform continuity) we
obtain, quite like in one variable

Theorem. For every continuous function
f:J — R on an n-dimenstonal compact
interval the Riemann integral [ 7| exists.



What we DO NOT have is a coun-
terpart of the Fundamental Theorem of
Calculus, in particular its consequence
that

for any primitive function G of f we
can compute the Riemann integral in
one variable as

b
/f@ﬁ—G@—G@.

The means to compute the Riemann in-
tegral in several variables will be now
provided by Fubini Theorem.



Theorem. (Fubini) Consider the pro-
duct J = J x J" C Epep of intervals
J'CEp, J" CEy,. Let [; f(x,y)dxy
exist and let for every x € J' (resp.
everyy € J”) the integral [ n f(x,y)dy
(resp. [ f(x,y)dx) exist. Then

/fxydxy—/ / f(x,y)dy)d
= [ (], rixyiay

Thus in two variables

/ f= / ( 2f<x,y>dy> .

in three variables

arya:
/ / f(x1, 29, x3)dzs | doo | dy
ai a9 as

etc.
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Before the proof: No surprise, it is quite
like
m n
Z Lig = Z Zx’ij
i<m.,j<n i=1 \j=1
and this is in fact what is being done,
with lower and upper sums, in the proof.

Proof of Theorem. Set

F(x) = . f(x,y)dy.

We will prove that [, ' exists and that

[r=[r

Choose a partition P of J such that

/f—egs(f,P) < S(f, P) S/f+€-

This partition P is constituted of a partition P’ of J" and
a partition P” of J”. We have

B(P)={B x B"|B' € B(P),B" € B(P")},
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and each brick of P appears as precisely one B’ x B”.
Then

) < Z maxfxy - vol B”
B// P//

and hence

S(F,P") < Z max Z maxf x,y) - vol(B")) - vol(B') <

B'eB(P!) BreB(P")”

< Y > max | f(x,y) - vol(B") -vol(B) <
pe ) prep pry VB
< Y max f(z)-vol(B'x B") = 5(f,P),

zeB'xB"
B'x B"€B(P)

and similarly

s(f,P) < s(F,P").

Hence we have

/f—sés(F,P’)S/JFSS(F,P)S/qur8
j :

and therefore [, F' is equal to [, f



Example: Volume of a ball. On the
interval J = (—r,r) x (—r,r) consider

7?2 — g2 —y?ifr? —a? —y? >0,
f(x,y)—{\/

0 otherwise

The volume of the ball will be 2 [, f, hence

([ oo . ([ =)

where u = v/r2 — 22. First compute the

/\/TQ—xQ—dey:/ \/u2—y2dy:u/ Ul—(%ﬁdy.

Substitution £ = sint yields dy = u costdt and

u/ \/1—(g)2dy:u2/ V1 —sin®t costdt =
u U x

= u2/ cos? tdt = u*m = (r* — )7

using the primitive function % of cos?t. Thus, the

volume of the ball is

" 1 4
277/ (r* — 2%)de = 27 (r° — =r®) = —7r°,
L 3 3
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The example also reveals another pro-
blem with the integral in n variables.
Unlike real functions in one variable where
an interval was a sufficiently typical do-
main, a function in n variables is not
typically defined on a brick. What we
do with such a function defined, say, on
a compact (that is, closed bounded D)
is that we

e first embed the D into a brick J,

e and then extend f by values 0 on

J~ND.

But there is still a problem. Does thus
extended function have a Riemann in-
tegral? In the example we were lucky:
/12 — 22 — y? thus extended from the
ball {(x, y) | 2°+y* < r?} to the square
was continuous.
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In general, one typicaly uses Fubini the-
orem and in the individual variables one
encounters Riemann integral of functi-
ons in one variable that are discontinu-
ous in finitely many points, which is OK

(EXPLAIN).

This is not quite correct: Fubini The-

orem, as we have it, assumes the eXis-

tence of the whole integral f J (x y)dxy,

not only of all the (say) F/(x) = [ f

plus the existence of f 7 F(x)dx. Most
usually, however, the ex1stence of [, f 7 f(x,y)dxy
follows from the fact that althought the
number of the discontinuity points is in-

finite, they are in the border of D and

the border od D has visibly volume 0.
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First remark on

Lebesgue integral.

Riemann integral can be extended so
that, e.g., it is correct to compute

[ =t [ 5,

just under the assumption that (e.g.)
| fn(x)| < K (K a constant).

For a closed D subset of a compact n-
dimensional interval J and a function f
continuous on D, as follows. Define

J, = {z|d(z, D) > %}.

Then g, defined on J,, as 0, and as f
on D, is continuous and we can extend

it to equally bounded continuous f;, on
J (Tietze Theorem). Then

lim f;, is f on D and 0 otherwise.
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Note. There is no extension of an in-
tegral in which

[ g =t [ 5,

would hold unconditionally. Consider on
(S&y) <_17 1>

0 for |z| 2%
fo(z) = { nz +n for —%gxgo
—n2x+nfor0§a:§%
and
0 for x # 0
gn(T) = {n for x =0
Then

/fn—l, /gn_o and hmfn:hmgn
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Detalils.
Text: Chapter XVI, Section 4
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