Repetition.

Uniform continuity. f : (X,d) — (Y, d)
is uniformly continuous if

Vedds.t.d(z,y) < d = d(f(z), fy)) < e.
More precisely, quantifying  and y:
Vedds.t. VaVy d(z,y) < d = d'(f(z), f(y)) < e.

The position of Vx is essential.
Plain continuity requires

VaVedo st. Vy - - -

Uniform continuity is stronger, but we
have

Theorem. If (X, d) is compact then
every continuous f : (X, d) — (Y,d')
1s uniformly continuous.

In particular this holds for continuous
real functions on compact intervals.
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Volumes (areas) (for A CE,)

Properties:

e ACB = vol(A) < vol(B)

e A, B disjoint = vol(AU B) = vol(A) + vol(B)
e vol is preserved under isometry

o n K, :

vol([ [;{ai, b)) = (br —ay) - - (b — an)

Fact. Generally
vol(AUB) = vol(A)+vol(B)—vol(ANB).

Volume of a facet of a brick is zero,
hence the volume of a system ot bricks
intersecting just in facets is the sum of
their volumes.

(We speak of almost disjoint unions.)
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Riemann integral in one variable:
A partition of {(a, b)

Pra=t)y<t1<:---<th_1<tp=0>0,
Refinements.

Mesh of P, p(P) = max;(t; —t;j_1).

Lower and upper sums

s(f,P)= ij(tj —tj_1) resp.
j=1

S(f,P)y="Y M;(t;—t;_y)
=

with
m; = inf{f(z)|t;—1 <z <t}
Mj = sup{ f(x) ‘tj—l <x< t]‘}.



Lowerresp. upper Riemann integral of
a function f

b
/ f(x)dx = sup{s(f, P)| P a partition} and
=
/ f(x)dz = inf{S(f, P)| P a partition}.

If they are equal,

b b
/f(w)dxz fayde = [ fa)da

a a a

is the Riemann integral of f over (a, b).

If f(x) > 0on {(a,b) then
fff(a:)da: is the area (volume) of

{(z,y)]a <z <bx<y< flo)}



Proposition. Riemann integral | C? f(x)dx
extsts if and only if for every € > 0
there 1s a partition P such that

S(f,P)—s(f,P)<e.

Theorem. For every continuous function
f:{a,b) = R Riemann integral f;f
ex1Sts.

Theorem. (Integral Mean Value Thm)
Let f : (a,b) — R be continuous.
Then there exists a ¢ € (a,b) such

that
/ f()de = F(e)(b— a).



Theorem. (Fund. Thm of Calculus)
Let f : < b) — R be continuous. For

€ (a,b) set
/ ()

Corollary. Let f : (a,b) — R be
continuous. Then 1t has a primitive

function on (a,b) continuous on (a, b).
[fG i1s any primitive function of f on
(a,b) continuous on {(a,b) then

/ (1) — G(a).

Corollary. (Integral mean value thm:)

b
F(b)—F(a) = / f = f(e)(b—a) = F'()(b—a)

The'n,F’(



Multivariable Riemann integral.

InE,, a compact interval ( an n-dimensional
compact interval) is

J = (a1,b1) X -+ X {an,bn)

(indeed it is compact); briefly, an inter-
val, or a brick.

A partition of J is a sequence P =
(PL, ..., P™) of partitions

P a; =10 <tj;<---< tj,nj—l < tj,nj = bj,
The intervals
(i D) X X (s tnggp 1)
will be called the bricks of P, and
B(P)

is the set of all the bricks of P.
It is an almost disjoint decomposition of J.
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That is, distinct bricks in B(P) obvi-
ously meet in a subset of a facet, hence
in a set of volume 0. Hence we have

Observation.

vol(J) = S {vol(B) | B € B(J)}.

Mesh of a partition.
diameterof J = (ry,s1) X -X{(Tn, Sn):

diam(J) = max(s; — r;);
(4

the mesh ot a partition P:
u(P) = max{diam(B)| B € B(P)}.

Refinement. A partition Q = (Q', ..., Q")
refines a partition P = (PL, ... P")if
every ()7 refines P/.



Observation. A refinement () of a
partition P induces partitions

Qp of the bricks B € B(P)

and we have an almost disjoint union

B(Q) = J{B(Qp)| B € B(P)}.

Observation. For any two partiti-
ons P,() of an n-dimensional com-
pact interval J there is a common re-
finement.



f . J — Risdefined on an n-dimensional
compact interval J, bounded, and B C
J i1s an n-dimensional compact subin-
terval of J. Set

m(f,B) =inf{f(x)|x € B} and
M(f,B) = sup{f(x) |x € B}.

Fact. m(f, B) < M(f,B) and if C C
B then

m(f,C) > m(f, B) and M(f,C) < M(f, B).

For a partition P of an interval J and
a bounded function f : J — R set

sj(f,P) =) {m(f,B)-vol(B)| B € B(P)},
Sy(f.P)=" {M(f,B)-vol(B)|B € B(P)}.
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A general observation:
f X — R bounded,
X=UX;, X;=UXy;

finite (almost) disjoint unions

M; = sup{ f(x) |z € X;},
M;; = sup{ f(z) |z € X;;}

Tl”iViaHyZ MZ] < Mi
(M; is an upper bound of { f(z) |z € X;}).

Hence

Z M;vol(X Z M; Z vol( X )
— Z M;vol(X;;) > Z M’ijVO|(Xij>
i ]

Similarly for infima.
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Proposition. Let a partition () re-
fine P. Then

s(f,Q) 2 s(f, P) and S5(f,Q) <5(f,P).

Proof: Apply the observation above for

{Xili} = B(P), {Xy;|7} = B@p),
and of course {X;; |ij} = B(Q).

Proposition. Let P, () be arbitrary
partitions of J. Then we have

s(f, P) < S(f,Q).
Proof. Since trivially s(f, P) < S(f, P),

if we consider a common refinement R
of P, () we obtain

s(f, P) < s(f,R) <S(f,R) < 5(f,Q)
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Hence: The set {s(f, P)| P a partition}
is bounded from above and we can de-
fine the lower Riemann integral of f
over J as

/ f(x)dx = sup{s(f, P)| P a partition};
< J

similarly,

/Jf(x)dx = inf{S(f, P)| P a partition}.

If they are equal we call the common
value the Riemann integral of f over

J, denoted
/ f(x)dx or simply / f
J J
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Another notation

/fxl,... n)dxy, ... Ty

/f T, ...,xTn)dridry - - - dxy.

It makes more sense than meets the eye.

Obviously we have the simple estimate

mi{f(x)|xe Jt-vol(J) < <
(re9lxe ) <>_Lf_
< / f < supl{f(x)|x € J} - vol(J).
J

Proposition. Riemann integral [ ; f(x)dx
exists if and only if for every € > 0
there is a partition P such that

Sjf,P)—sj(f,P) <e.
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Note that it is quite straightforward: the
inequality yields

Si(f, P) <e+s;(f,P)

and from this

/gSJ(f,P) < e+sj(f, P) §5+/§5+/

and ¢ is arbitrarily small.
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Theorem. For every continuous function
f:J — R on an n-dimenstonal compact

interval the Riemann integral | 7 | exists.
Proof. We will use the distance o in [, defined by

o(x, y) = mix|z; — |

Since f is uniformly continuous we can choose for € > 0
a 0 > 0 such that

o(x,y) <o = |f(x)— fly)| <

vol(J)

Recall the mesh p(P). If u(P) < § then diam(B) < §
for all B € B(P) and hence

M(f.B) = m(f. B) = sup{f(x)| x € B} —inf{f(x) |x € B} <
< sup{|f(x) = f) [y € B} <

so that
S(f,P)— s(f,P) —

= Z{ _m(f,B))-vol(B)| B € B(P)} <
Z{vol )| B € B(P)} = —vol(J) ==

voI
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Detalils.
Text: Chapter XVI, Sections 1,2,3
Chapter XIII, 2.3
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