
Repetition.

Uniform continuity. f : (X, d)→ (Y, d′)
is uniformly continuous if

∀ε∃δ s.t. d(x, y) < δ ⇒ d′(f (x), f (y)) < ε.

More precisely, quantifying x and y:

∀ε∃δ s.t. ∀x∀y d(x, y) < δ ⇒ d′(f (x), f (y)) < ε.

The position of ∀x is essential.
Plain continuity requires

∀x∀ε∃δ s.t. ∀y · · ·
Uniform continuity is stronger, but we
have

Theorem. If (X, d) is compact then
every continuous f : (X, d) → (Y, d′)
is uniformly continuous.

In particular this holds for continuous
real functions on compact intervals.
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Volumes (areas) (for A ⊆ En)
Properties:

• A ⊆ B ⇒ vol(A) ≤ vol(B)

• A,B disjoint⇒ vol(A ∪B) = vol(A) + vol(B)

• vol is preserved under isometry

• in En :
vol(

∏
i〈ai, bi〉) = (b1 − a1) · · · · · (bn − an)

Fact. Generally

vol(A∪B) = vol(A)+vol(B)−vol(A∩B).

Volume of a facet of a brick is zero,
hence the volume of a system of bricks
intersecting just in facets is the sum of
their volumes.

(We speak of almost disjoint unions.)
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Riemann integral in one variable:
A partition of 〈a, b〉
P : a = t0 < t1 < · · · < tn−1 < tn = b,

Refinements.

Mesh of P , µ(P ) = maxj(tj − tj−1).

Lower and upper sums

s(f, P ) =

n∑
j=1

mj(tj − tj−1) resp.

S(f, P ) =

n∑
j=1

Mj(tj − tj−1)

with

mj = inf{f (x) | tj−1 ≤ x ≤ tj},
Mj = sup{f (x) | tj−1 ≤ x ≤ tj}.
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Lower resp. upper Riemann integral of
a function f∫ b

a

f (x)dx = sup{s(f, P ) |P a partition} and∫ b

a
f (x)dx = inf{S(f, P ) |P a partition}.

If they are equal,∫ b

a
f (x)dx =

∫ b

a

f (x)dx =

∫ b

a
f (x)dx

is the Riemann integral of f over 〈a, b〉.

If f (x) ≥ 0 on 〈a, b〉 then∫ b
a f (x)dx is the area (volume) of

{(x, y) | a ≤ x ≤ b, x ≤ y ≤ f (x)}
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Proposition. Riemann integral
∫ b
a f (x)dx

exists if and only if for every ε > 0
there is a partition P such that

S(f, P )− s(f, P ) < ε.

Theorem. For every continuous function

f : 〈a, b〉 → R Riemann integral
∫ b
a f

exists.

Theorem. (Integral Mean Value Thm)
Let f : 〈a, b〉 → R be continuous.
Then there exists a c ∈ 〈a, b〉 such
that ∫ b

a
f (x)dx = f (c)(b− a).
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Theorem. (Fund. Thm of Calculus)
Let f : 〈a, b〉 → R be continuous. For
x ∈ 〈a, b〉 set

F (x) =

∫ x

a
f (t)dt.

Then F ′(x) = f (x).

Corollary. Let f : 〈a, b〉 → R be
continuous. Then it has a primitive
function on (a, b) continuous on 〈a, b〉.
If G is any primitive function of f on
(a, b) continuous on 〈a, b〉 then∫ b

a
f (t)dt = G(b)−G(a).

.

Corollary. (Integral mean value thm:)

F (b)−F (a) =

∫ b

a
f = f (c)(b−a) = F ′(c)(b−a)
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Multivariable Riemann integral.

In En, a compact interval ( an n-dimensional
compact interval) is

J = 〈a1, b1〉 × · · · × 〈an, bn〉
(indeed it is compact); briefly, an inter-
val, or a brick.

A partition of J is a sequence P =
(P 1, . . . , Pn) of partitions

P j : aj = tj0 < tj1 < · · · < tj,nj−1 < tj,nj = bj, j = 1, . . . n.

The intervals

〈t1,i1, t1,i1+1〉 × · · · × 〈tn,in, tn,in+1〉
will be called the bricks of P , and

B(P )

is the set of all the bricks of P .
It is an almost disjoint decomposition of J .
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That is, distinct bricks in B(P ) obvi-
ously meet in a subset of a facet, hence
in a set of volume 0. Hence we have

Observation.
vol(J) =

∑
{vol(B) |B ∈ B(J)}.

Mesh of a partition.
diameter of J = 〈r1, s1〉×· · ·×〈rn, sn〉:

diam(J) = max
i

(si − ri);

the mesh of a partition P :

µ(P ) = max{diam(B) |B ∈ B(P )}.

Refinement. A partitionQ = (Q1, . . . , Qn)
refines a partition P = (P 1, . . . , Pn) if
every Qj refines P j.
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Observation. A refinement Q of a
partition P induces partitions

QB of the bricks B ∈ B(P )

and we have an almost disjoint union

B(Q) =
⋃
{B(QB) |B ∈ B(P )}.

Observation. For any two partiti-
ons P,Q of an n-dimensional com-
pact interval J there is a common re-
finement.
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f : J → R is defined on an n-dimensional
compact interval J , bounded, and B ⊆
J is an n-dimensional compact subin-
terval of J . Set

m(f,B) = inf{f (x) | x ∈ B} and

M(f,B) = sup{f (x) | x ∈ B}.

Fact.m(f,B) ≤M(f,B) and if C ⊆
B then

m(f, C) ≥ m(f,B) and M(f, C) ≤M(f,B).

For a partition P of an interval J and
a bounded function f : J → R set

sJ(f, P ) =
∑
{m(f,B) · vol(B) |B ∈ B(P )},

SJ(f, P ) =
∑
{M(f,B) · vol(B) |B ∈ B(P )}.
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A general observation:
f : X → R bounded,
X =

⋃
Xi, Xi =

⋃
Xij

finite (almost) disjoint unions

Mi = sup{f (x) |x ∈ Xi},
Mij = sup{f (x) |x ∈ Xij}

Trivially: Mij ≤Mi
(Mi is an upper bound of {f (x) |x ∈ Xij}).
Hence∑
i

Mivol(Xi) =
∑
i

Mi

∑
j

vol(Xij) =

=
∑
ij

Mivol(Xij) ≥
∑
ij

Mijvol(Xij)

Similarly for infima.
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Proposition. Let a partition Q re-
fine P . Then

s(f,Q) ≥ s(f, P ) and S(f,Q) ≤ S(f, P ).

Proof: Apply the observation above for
{Xi | i} = B(P ), {Xij | j} = B(QB),
and of course {Xij | ij} = B(Q).

Proposition. Let P,Q be arbitrary
partitions of J . Then we have

s(f, P ) ≤ S(f,Q).

Proof. Since trivially s(f, P ) ≤ S(f, P ),
if we consider a common refinement R
of P,Q we obtain

s(f, P ) ≤ s(f,R) ≤ S(f,R) ≤ S(f,Q).
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Hence: The set {s(f, P ) |P a partition}
is bounded from above and we can de-
fine the lower Riemann integral of f
over J as∫
J

f (x)dx = sup{s(f, P ) |P a partition};

similarly,∫
J
f (x)dx = inf{S(f, P ) |P a partition}.

If they are equal we call the common
value the Riemann integral of f over
J , denoted∫

J
f (x)dx or simply

∫
J
f
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Another notation∫
J
f (x1, . . . , xn)dx1, . . . xn

or ∫
J
f (x1, . . . , xn)dx1dx2 · · · dxn.

It makes more sense than meets the eye.

——————

Obviously we have the simple estimate

inf{f (x) | x ∈ J} · vol(J) ≤
∫
J

f ≤

≤
∫
J
f ≤ sup{f (x) | x ∈ J} · vol(J).

Proposition. Riemann integral
∫
J f (x)dx

exists if and only if for every ε > 0
there is a partition P such that

SJ(f, P )− sJ(f, P ) < ε.
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Note that it is quite straightforward: the
inequality yields

SJ(f, P ) < ε + sJ(f, P )

and from this∫
≤ SJ(f, P ) < ε+sJ(f, P ) ≤ ε+

∫
≤ ε+

∫
and ε is arbitrarily small.
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Theorem. For every continuous function
f : J → R on an n-dimensional compact
interval the Riemann integral

∫
J f exists.

Proof. We will use the distance σ in En defined by

σ(x, y) = max
i
|xi − yi|.

Since f is uniformly continuous we can choose for ε > 0

a δ > 0 such that

σ(x, y) < δ ⇒ |f (x)− f (y)| < ε

vol(J)
.

Recall the mesh µ(P ). If µ(P ) < δ then diam(B) < δ

for all B ∈ B(P ) and hence

M(f,B)−m(f,B) = sup{f (x) | x ∈ B} − inf{f (x) | x ∈ B} ≤

≤ sup{|f (x)− f (y)| | x, y ∈ B} < ε

vol(J)

so that

S(f, P )− s(f, P ) =

=
∑
{(M(f,B)−m(f,B)) · vol(B) |B ∈ B(P )} ≤

≤ ε

vol(J)

∑
{vol(B) |B ∈ B(P )} =

ε

volJ
vol(J) = ε.
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Details.
Text: Chapter XVI, Sections 1,2,3

Chapter XIII, 2.3
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