Repetition.

General Implicit Functions Theorem.
Theorem. Let F;(X, y1, ..., Ym), 1 = 1,...,m, be functi-
ons of n + m wvariables with continuous partial deri-
vatives up to an order k > 1. Let

Fx",y))=o
and let D(F)
x! yY .
D(y)( y)#0

Then there exist 6 > 0 and A > 0 such that for every
x € (z) — 0,20 +0) x -+ x (20 — 6,20 +9)
there exists precisely one
Y€ (W — Ay +A) X X (g, — Az, + A)
such that
F(x,y) =0.
(That is,
Fi(x,y1,...,yn) =0,

Fn(X,yl,...,yn>:O. )
Furthermore, if we write this 'y as a vector function
f(x) = (fi(x),..., fm(X)), then the functions f; have

continuous partial derivatives up to the order k.
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Jacobi determinant.
For

Fx,y) = (F1(% Y1y -5 Um)s - s Fn (X Y1, - o Um))-

and y = (Y1, ym):
Jacobi determinant (Jacobian)

@ — det <8FZ>
D(y) Iy ii=1,...m

Recall:
(The absolute value) of the determinant

aii, @12, .. .,01n
v 0.

anl, An2y - - - Ann
is the volume of the parallelepiped determined by the

vectors (a11, @12, - - -, A1n),.., (A11,Q12, - -+, A1p).

Hence, Jacobian expreses local changes
of volume under transformation F(x, —).



Application: Extremes under constraints.

Theorem. Let f,qg1,...,q. be real functions defi-
ned i an open set D C E,, and let them have con-
tinuous partial derivatives. Suppose that the rank of
the matrix

% g1
ox:  Ox,
M=1 ..., ..., ...
% I
or: ' Oxy,
15 the largest possible, that is k, everywhere in D.
If the function f achieves at a pointa = (aq, ..., ay)

a local extreme subject to the constraints

gi(xy,...,x,) =0, i=1,....k

then there exist numbers A1, ..., A\, such that for each
1=1,...,n we have
k
0f(a) dg;(a)
N - 2L ),
5)331' * Z J 5’:@ !



Principle of proof (how the IFT is applied):
Let, say, the leftmost square submatrice of M be re-
gular. Thus we have

99 991
Oz, 7 Oxmy,
) ) 7é0 (*)
9gr Ogr
Ox;” ' Oxmy,

Think of the constraints (k < n)

as of an Implicit Functions task

y
Gi(TL, - TR, Tpr1, -, y) =0, 1=1,... )k
Then (*) amounts to % # 0 and we have for ¢ < k,

T; = ¢i(Tpat, ny Tp) With X = zp41, ..., T, moving freely
in

F(:U/{H—l) ces 73771) — f(gbl(;(/)v R 7¢7€(§>7§)
The rest is Chain Rule and linear algebra (and the primi-
tive search for local extremes by zero partial derivatives).
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Regular maps.
For open U C E,, and
fi:U—=R, 1=1,...,n,
the resulting mapping
f=(fi,....fa):U—E,

is called regular if

for all x € U.

Proposition. Iff : U — E, s reqular then the image

f[V] of every open V- C U is open.

Proposition. Let f : U — E,, be a reqular mapping.
Then for each x € U there exists an open neighbor-
hood V' such that the restriction |V is one-to-one.
Moreover, the mapping g : f|V] — E,, inverse to f|V

18 reqular.

Corollary. A one-to-one reqular mapping f : U — E,

has a reqular inverse g : f{U] — E,.



Volumes (areas).
A C E, (in particular, Eo)

Properties:

e ACB = vol(A) < vol(B)

e A, B disjoint = vol(AU B) = vol(A) + vol(B)
e vol is preserved under isometry.

o In [K- :

vol((at, b1)x{az, b)) = (b1 — a1)(b2 — a2)
o Inlk, :

vol([ [;{as, bi)) = (b1 —az) - -+ - (bn — an)

Fact. Generally
vol(AUB) = vol(A)+vol(B)—vol(aNB).

(Combine the disjoint unions AUB = AU (B~ A) and
B=(BNA)U(ANB).)









Uniform continuity. f : (X,d) —
(Y, d') is uniformly continuous if

Vedds.t. d(z,y) < d = d(f(z), fy)) < e.

Compare with plain continuity: If we
consequentially quantity the points x, v,
plain continuity is defined by

VaVedd st Yy d(z,y) < 6 = d'(f(x), fly)) < e.
while the new uniform continuity has

Vedo s.t. VaVy d(z,y) < 6 = d'(f(x), f(y)) < .

The position of the quantifier Vz is
essential !

Example. f = (z — z°) - R — R is
continuous but not uniformly continu-
ous.

We have |f(z) — f(y)| = |z + y| - |x — yl; thus, to have
|f(x) — f(y)| < e in the vicinity of x = 100 we need
the 0 100 times smaller than if we are in the vicinity of

r=1.



But we have

Theorem. If (X,d) is compact then
every continuous f : (X,d) — (Y, d)
15 uniformly continuous.

In particular this holds for continuous
real functions on compact intervals.

Proof. Let f : (X,d) — (Y, d) not be uniformly conti-
nuous. Then there is an € > 0 such that for every n there

are x,,y, with
1

and

d'(f(xn), fyn)) = . ()
Choose a convergent subsequence (zy, ), of (x,),. Set
a = lim, zg,. Then by (%) also @ = lim, yy,. By (%)
we cannot have both f(a) = lim, f(xy,) and f(a) =

lim,, f(yk, ), and hence f is not continuous.



Riemann integral in one variable,
recapitulation.
A partition of {a, b): it is a sequence

P:ra=ty<t1<:---<tph_1<ty,=0.
Refinement:

P:a=ty<t)< <t ,<tp=0>
st {tjli=1,...,n=1} C{t|j=1,...,m—1}.

Mesh of P, /L(P) — man(tj — tj—l)-

For bounded f : J = (a,b) — R and P as above: Define
lower and upper sums

s(f, P) = ij(tj —t;_1) resp.
j=1

S(f,P) = Z M;(t; —tj-1)

with

m; =nf{f(z) |t;-1 <@ <t} My =sup{f(z) [tj-1 <z < 1)}






Easy facts. 1. If P refines P then
s(f,P) < s(f,P") and S(f,P)=S(f,P)

2. For any two P, P»,
s(f, P) < S(f, ).

The integral.

b
/ f(z)dx = sup{s(f, P)| P a partition} and

—b
/ f(x)dz = inf{S(f, P)| P a partition}.

The first is called the lower Riemann
integral of f over (a,b), the second is
the upper Riemann integral of f.
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[f f;f(x)dx = TZf(a:)dx then the

common value is denoted by

/a e

and called Riemann integral of f over

(a,b).

Proposition. Riemann integral | ; f(x)dx
exists if and only if for every € > 0
there 1s a partition P such that

S(f,P)—s(f,P) < e.

Proof. 1. Let fab f(z)dx exist and let € > 0. Then there
are partitions P and P, such that

b b
S(f,P1)</ f(x)da:Jr% and 3(f,P2)>/ f(a:)dx—i—g.

Then we have for the common refinement P of Py, Ps,

b b
S(f,P)—s(f,P) </ f(l')dl'+§—/ f(x)d:c—i—g = €.
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[I. Let the statement hold. Choose an € > 0 such that
S(f,P)—s(f,P) <e. Then

. )
/f(a:)deS(f,P)<s(f,P)—|—5§/f(a:)da:—i—s,

and since € was arbitrary we conclude that TZ f(x)dx =
iZf(az)daz.
Theorem. For every continuous function
f:{a,b) — R Riemann integral ff f
exLSts.
Proof. For € > 0 choose 0 > 0 s.t.

z—yl<s = |f@@) - )l < —.

If u(P) < d we have t; —t;_; < ¢ for all j, and hence

Mj —mj =sup{f(z) [t <o <t;} —inf{f(2)[t; 1 <2 <t} <
<sup{|f(z) = fW)|[tj-1 < z,y <t} <

b—a
so that

S(f, P) = s(f, P) =Y (M; —m;)(t; —t; 1)
< bfaZ(tj—tj_l) = —(b-a)=¢.

VAN

12



Theorem. (Integral Mean Value Thm)
Let f : (a,b) — R be continuous.
Then there exists a ¢ € {(a,b) such
that

/ f()de = F(e)(b— a).

Proof. Set m = min{f(z)|a < z < b} and M =
max{ f(z)|a < x < b}. Obviously

b
m(b—a) < / flx)dxe < M(b— a).

Hence there is a K with m < K < M such that fab f(x)dx =
K (b—a). Since f is continuous there is a ¢ € (a, b) such

that K = f(c).
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Observation. For any a < b < c,

/abf+/bcf—/acf-

Theorem. (Fund. Thm of Calculus)
Let f: {(a,b) — R be continuous. For

€ (a,b) set
/ (6
Then F'(x) =
Proof. For h # 0 we have

;L(F:Hh f(2) =~ / /f
_Efx f:%f(x+9h)h:f(x+9h)

where 0 < § < 1 and as [ is continuous, limy,_,o +(F(z +

h)— f(z)) = lim,_ f(x + 0h) = f(x).
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Corollary. Let f : (a,b) — R be
continuous. Then 1t has a primitive
function on (a,b) continuous on {(a,b).
[fG i1s any primitive function of f on
(a,b) continuous on {(a,b) then

/ (1) — G(a).

15



Details.
Text: Chapter XI, Sections 1, 2, 3 and
4.
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