Repetition.

General Implicit Functions Theorem.

Theorem. Let $F_i(\mathbf{x}, y_1, \dots, y_m)$, $i = 1, \dots, m$, be functions of n + m variables with continuous partial derivatives up to an order $k \geq 1$. Let

$$\mathbf{F}(\mathbf{x}^0, \mathbf{y}^0) = \mathbf{o}$$

and let

$$\frac{\mathsf{D}(\mathbf{F})}{\mathsf{D}(\mathbf{y})}(\mathbf{x}^0,\mathbf{y}^0) \neq 0.$$

Then there exist $\delta > 0$ and $\Delta > 0$ such that for every

$$\mathbf{x} \in (x_1^0 - \delta, x_1^0 + \delta) \times \dots \times (x_n^0 - \delta, x_n^0 + \delta)$$

there exists precisely one

$$\mathbf{y} \in (y_1^0 - \Delta, y_1^0 + \Delta) \times \cdots \times (y_m^0 - \Delta, x_m^0 + \Delta)$$

such that

$$\mathbf{F}(\mathbf{x},\mathbf{y})=0.$$

(That is,

$$F_1(\mathbf{x},y_1,\ldots,y_n)=0,$$

$$F_n(\mathbf{x}, y_1, \dots, y_n) = 0. \quad)$$

Furthermore, if we write this \mathbf{y} as a vector function $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$, then the functions f_i have continuous partial derivatives up to the order k.

Jacobi determinant.

For

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = (F_1(\mathbf{x}, y_1, \dots, y_m), \dots, F_m(\mathbf{x}, y_1, \dots, y_m)).$$

and
$$\mathbf{y} = (y_1, \dots, y_m)$$
:

Jacobi determinant (Jacobian)

$$\frac{\mathsf{D}(\mathbf{F})}{\mathsf{D}(\mathbf{y})} = \det\left(\frac{\partial F_i}{\partial y_j}\right)_{i,j=1,\dots,m}$$

Recall:

(The absolute value) of the determinant

$$\begin{vmatrix} a_{11}, a_{12}, \dots, a_{1n} \\ \dots, \dots, \dots \\ a_{n1}, a_{n2}, \dots, a_{nn} \end{vmatrix} \neq 0.$$

is the volume of the parallelepiped determined by the vectors $(a_{11}, a_{12}, \ldots, a_{1n}), \ldots, (a_{11}, a_{12}, \ldots, a_{1n}).$

Hence, Jacobian expresses local changes of volume under transformation $\mathbf{F}(\mathbf{x}, -)$.

Application: Extremes under constraints.

Theorem. Let f, g_1, \ldots, g_k be real functions defined in an open set $D \subseteq \mathbb{E}_n$, and let them have continuous partial derivatives. Suppose that the rank of the matrix

$$M = \begin{pmatrix} \frac{\partial g_1}{\partial x_1}, & \dots, & \frac{\partial g_1}{\partial x_n} \\ \dots, & \dots, & \dots \\ \frac{\partial g_k}{\partial x_1}, & \dots, & \frac{\partial g_k}{\partial x_n} \end{pmatrix}$$

is the largest possible, that is k, everywhere in D.

If the function f achieves at a point $\mathbf{a} = (a_1, \dots, a_n)$ a local extreme subject to the constraints

$$g_i(x_1, \dots, x_n) = 0, \quad i = 1, \dots, k$$

then there exist numbers $\lambda_1, \ldots, \lambda_k$ such that for each $i = 1, \ldots, n$ we have

$$\frac{\partial f(\mathbf{a})}{\partial x_i} + \sum_{j=1}^k \lambda_j \cdot \frac{\partial g_j(\mathbf{a})}{\partial x_i} = 0.$$

Principle of proof (how the IFT is applied):

Let, say, the leftmost square submatrice of M be regular. Thus we have

$$\begin{vmatrix} \frac{\partial g_1}{\partial x_1}, & \dots, & \frac{\partial g_1}{\partial x_k} \\ \dots, & \dots, & \dots \end{vmatrix} \neq 0. \tag{*}$$

$$\begin{vmatrix} \frac{\partial g_k}{\partial x_1}, & \dots, & \frac{\partial g_k}{\partial x_k} \end{vmatrix}$$

Think of the constraints (k < n)

$$g_1(x_1, \dots, x_n) = 0$$

$$\dots \dots$$

$$g_k(x_1, \dots, x_n) = 0$$

as of an Implicit Functions task

$$g_i(\underbrace{x_1,\ldots,x_k}, x_{k+1},\ldots,x_n) = 0, \ i = 1,\ldots,k$$

Then (*) amounts to $\frac{D(\mathbf{g})}{D(\mathbf{y})} \neq 0$ and we have for $i \leq k$, $x_i = \phi_i(x_{k+1}, ..., x_n)$ with $\widetilde{\mathbf{x}} = x_{k+1}, ..., x_n$ moving freely in

$$F(x_{k+1},\ldots,x_n)=f(\phi_1(\widetilde{\mathbf{x}}),\ldots,\phi_k(\widetilde{\mathbf{x}}),\widetilde{\mathbf{x}}).$$

The rest is Chain Rule and linear algebra (and the primitive search for local extremes by zero partial derivatives).

Regular maps.

For open $U \subseteq \mathbb{E}_n$ and

$$f_i: U \to \mathbb{R}, \quad i = 1, \dots, n,$$

the resulting mapping

$$\mathbf{f} = (f_1, \dots, f_n) : U \to \mathbb{E}_n$$

is called regular if

$$\frac{\mathsf{D}(\mathbf{f})}{\mathsf{D}(\mathbf{x})}(\mathbf{x}) \neq 0$$

for all $\mathbf{x} \in U$.

Proposition. If $\mathbf{f}: U \to \mathbb{E}_n$ is regular then the image $\mathbf{f}[V]$ of every open $V \subseteq U$ is open.

Proposition. Let $\mathbf{f}: U \to \mathbb{E}_n$ be a regular mapping. Then for each $\mathbf{x} \in U$ there exists an open neighborhood V such that the restriction $\mathbf{f}|V$ is one-to-one. Moreover, the mapping $\mathbf{g}: f[V] \to \mathbb{E}_n$ inverse to $\mathbf{f}|V$ is regular.

Corollary. A one-to-one regular mapping $\mathbf{f}: U \to \mathbb{E}_n$ has a regular inverse $\mathbf{g}: \mathbf{f}[U] \to \mathbb{E}_n$.

Volumes (areas).

$$A \subseteq \mathbb{E}_n$$
 (in particular, \mathbb{E}_2)

Properties:

- $\bullet A \subseteq B \Rightarrow \operatorname{vol}(A) \leq \operatorname{vol}(B)$
- $A, B \text{ disjoint} \Rightarrow \text{vol}(A \cup B) = \text{vol}(A) + \text{vol}(B)$
- vol is preserved under isometry.
- In \mathbb{E}_2 : $\operatorname{vol}(\langle a_1, b_1 \rangle \times \langle a_2, b_2 \rangle) = (b_1 a_1)(b_2 a_2)$
- In \mathbb{E}_n : $\operatorname{vol}(\prod_i \langle a_i, b_i \rangle) = (b_1 a_1) \cdot \dots \cdot (b_n a_n)$

Fact. Generally

$$\mathsf{vol}(A \cup B) = \mathsf{vol}(A) + \mathsf{vol}(B) - \mathsf{vol}(a \cap B).$$

(Combine the disjoint unions $A \cup B = A \cup (B \setminus A)$ and $B = (B \setminus A) \cup (A \cap B)$.)

Uniform continuity. $f:(X,d) \rightarrow (Y,d')$ is uniformly continuous if

$$\forall \varepsilon \exists \delta \text{ s.t. } d(x,y) < \delta \Rightarrow d'(f(x),f(y)) < \varepsilon.$$

Compare with plain continuity: If we consequentially quantify the points x, y, plain continuity is defined by

 $\forall x \forall \varepsilon \exists \delta \text{ s.t. } \forall y \ d(x,y) < \delta \Rightarrow d'(f(x),f(y)) < \varepsilon.$ while the new uniform continuity has

$$\forall \varepsilon \exists \delta \text{ s.t. } \forall x \forall y \ d(x,y) < \delta \Rightarrow d'(f(x),f(y)) < \varepsilon.$$

The position of the quantifier $\forall x$ is essential!

Example. $f = (x \mapsto x^2) : \mathbb{R} \to \mathbb{R}$ is continuous but not uniformly continuous.

We have $|f(x) - f(y)| = |x + y| \cdot |x - y|$; thus, to have $|f(x) - f(y)| < \varepsilon$ in the vicinity of x = 100 we need the δ 100 times smaller than if we are in the vicinity of x = 1.

But we have

Theorem. If (X, d) is compact then every continuous $f: (X, d) \to (Y, d')$ is uniformly continuous.

In particular this holds for continuous real functions on compact intervals.

Proof. Let $f:(X,d)\to (Y,d')$ not be uniformly continuous. Then there is an $\varepsilon>0$ such that for every n there are x_n,y_n with

$$d(x_n, y_n) < \frac{1}{n} \tag{*}$$

and

$$d'(f(x_n), f(y_n)) \ge \varepsilon. \tag{**}$$

Choose a convergent subsequence $(x_{k_n})_n$ of $(x_n)_n$. Set $a = \lim_n x_{k_n}$. Then by (*) also $a = \lim_n y_{k_n}$. By (**) we cannot have both $f(a) = \lim_n f(x_{k_n})$ and $f(a) = \lim_n f(y_{k_n})$, and hence f is not continuous.

Riemann integral in one variable, recapitulation.

A partition of $\langle a, b \rangle$: it is a sequence

$$P: a = t_0 < t_1 < \dots < t_{n-1} < t_n = b.$$

Refinement:

$$P': a = t'_0 < t'_1 < \dots < t'_{n-1} < t_m = b$$

s. t.
$$\{t_j \mid j = 1, \dots, n-1\} \subseteq \{t'_j \mid j = 1, \dots, m-1\}.$$

Mesh of
$$P$$
, $\mu(P) = \max_{j} (t_j - t_{j-1})$.

For bounded $f:J=\langle a,b\rangle\to\mathbb{R}$ and P as above: Define lower and upper sums

$$s(f, P) = \sum_{j=1}^{n} m_j (t_j - t_{j-1})$$
 resp.
 $S(f, P) = \sum_{j=1}^{n} M_j (t_j - t_{j-1})$

with

$$m_j = \inf\{f(x) \mid t_{j-1} \le x \le t_j\}, M_j = \sup\{f(x) \mid t_{j-1} \le x \le t_j\}.$$

Easy facts. 1. If P' refines P then $s(f, P) \leq s(f, P')$ and $S(f, P) \geq S(f, P')$

2. For any two $P_1, P_2,$ $s(f, P_1) \le S(f, P_2).$

The integral.

$$\frac{\int_{a}^{b} f(x) dx = \sup\{s(f, P) \mid P \text{ a partition}\} \text{ and }}{\int_{a}^{b} f(x) dx = \inf\{S(f, P) \mid P \text{ a partition}\}.}$$

The first is called the *lower Riemann* integral of f over $\langle a, b \rangle$, the second is the *upper Riemann integral* of f.

If $\underline{\int}_a^b f(x) dx = \overline{\int}_a^b f(x) dx$ then the common value is denoted by

$$\int_{a}^{b} f(x) \mathrm{d}x$$

and called $Riemann\ integral\ of\ f$ over $\langle a,b\rangle$.

Proposition. Riemann integral $\int_a^b f(x) dx$ exists if and only if for every $\varepsilon > 0$ there is a partition P such that

$$S(f, P) - s(f, P) < \varepsilon.$$

Proof. I. Let $\int_a^b f(x) dx$ exist and let $\varepsilon > 0$. Then there are partitions P_1 and P_2 such that

$$S(f, P_1) < \int_a^b f(x) dx + \frac{\varepsilon}{2}$$
 and $s(f, P_2) > \int_a^b f(x) dx + \frac{\varepsilon}{2}$.

Then we have for the common refinement P of P_1, P_2 ,

$$S(f,P) - s(f,P) < \int_a^b f(x) dx + \frac{\varepsilon}{2} - \int_a^b f(x) dx + \frac{\varepsilon}{2} = \varepsilon.$$

II. Let the statement hold. Choose an $\varepsilon > 0$ such that $S(f, P) - s(f, P) < \varepsilon$. Then

$$\overline{\int}_{a}^{b} f(x) dx \le S(f, P) < s(f, P) + \varepsilon \le \underline{\int}_{a}^{b} f(x) dx + \varepsilon,$$

and since ε was arbitrary we conclude that $\overline{\int}_a^b f(x) dx = \underline{\int}_a^b f(x) dx$.

Theorem. For every continuous function $f: \langle a, b \rangle \to \mathbb{R}$ Riemann integral $\int_a^b f$ exists.

Proof. For $\varepsilon > 0$ choose $\delta > 0$ s.t.

$$|x-y| < \delta \quad \Rightarrow \quad |f(x) - f(y)| < \frac{\varepsilon}{b-a}.$$

If $\mu(P) < \delta$ we have $t_j - t_{j-1} < \delta$ for all j, and hence

$$M_j - m_j = \sup\{f(x) \mid t_{j-1} \le x \le t_j\} - \inf\{f(x) \mid t_{j-1} \le x \le t_j\} \le \sup\{|f(x) - f(y)| \mid t_{j-1} \le x, y \le t_j\} \le \frac{\varepsilon}{b-a}$$

so that

$$S(f,P) - s(f,P) = \sum_{\varepsilon} (M_j - m_j)(t_j - t_{j-1}) \le \frac{\varepsilon}{b-a} \sum_{\varepsilon} (t_j - t_{j-1}) = \frac{\varepsilon}{b-a} (b-a) = \varepsilon.$$

Theorem. (Integral Mean Value Thm) Let $f: \langle a, b \rangle \to \mathbb{R}$ be continuous. Then there exists $a \ c \in \langle a, b \rangle$ such that

$$\int_{a}^{b} f(x)dx = f(c)(b-a).$$

Proof. Set $m = \min\{f(x) | a \le x \le b\}$ and $M = \max\{f(x) | a \le x \le b\}$. Obviously

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a).$$

Hence there is a K with $m \leq K \leq M$ such that $\int_a^b f(x) dx = K(b-a)$. Since f is continuous there is a $c \in \langle a, b \rangle$ such that K = f(c).

Observation. For any a < b < c,

$$\int_{a}^{b} f + \int_{b}^{c} f = \int_{a}^{c} f.$$

Theorem. (Fund. Thm of Calculus) Let $f: \langle a, b \rangle \to \mathbb{R}$ be continuous. For $x \in \langle a, b \rangle$ set

$$F(x) = \int_{a}^{x} f(t) dt.$$

Then F'(x) = f(x).

Proof. For $h \neq 0$ we have

$$\frac{1}{h}(F(x+h) - f(x)) = \frac{1}{h}(\int_{a}^{x+h} f - \int_{a}^{x} f) =$$

$$= \frac{1}{h} \int_{x}^{x+h} f = \frac{1}{h} f(x+\theta h)h = f(x+\theta h)$$

where $0 < \theta < 1$ and as f is continuous, $\lim_{h\to 0} \frac{1}{h} (F(x+h) - f(x)) = \lim_{h\to 0} f(x+\theta h) = f(x)$.

Corollary. Let $f : \langle a, b \rangle \to \mathbb{R}$ be continuous. Then it has a primitive function on (a, b) continuous on $\langle a, b \rangle$. If G is any primitive function of f on (a, b) continuous on $\langle a, b \rangle$ then

$$\int_{a}^{b} f(t) dt = G(b) - G(a).$$

.

Details.

Text: Chapter XI, Sections 1, 2, 3 and 4.