Repetition.
Implicite Functions Theorems.
Task: solving a system of equations

Fl(X,yl,...,yn) :Oa

Fn(xayla” 7y7”L) =0
in terms of y, as well determined functi-
ons fi(x) (where x = (x1,...,xp)).

A. One equation: F/(x,y) = 0:
In a nbhood of (x', yo) assumed on F':
cont. p. d. up to order k > 1,

8F(x0, yO)
dy

F(xy0) =0 and ‘ # 0.

Then one has in some
{x][]x —x"|| < &} x (yo — 6,90 + 9)

unique solution (X, f(x)), an the re-
sulting f has cont.p.d. up to order k.
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Proved with one variable x.
The properties of f may be more transparent if we

indicate the shifts hy = h and hy = f(z + h) — f(z) in
Lagrange theorem by red:

0=F(t+h, f(t+h)— F(t, f(t) =
= F(t+h, f(t) + (f(t +h) = f(1))) —
COF(t+0h, f(t)+0(f(t+N) — f(1))
- Ox

F(t, f(t) =
),

| OF(t+0h, f(1) +69(f(t +h)— f(t m(f(t +h) — f(t))
Y
hence
OF (t +0h, f(t) + 0(f(t + h) — f(1)))
B ox
ft+h)—f(t) = —h- OF (t + Ohf(t) + O0(f(t+ h) — f(1))
dy
()
for some 6 between 0 and 1.Thus,
K

e+ h) = FO1< Al - |~

Hence f is continuous, and from (%) further

OF(t, f(1))
R (BT
h—0 h OF(t, f(t))

dy



If we have partial derivatives of F' in
(xp, yo) we can compute from

OF(t, f(t))
(1Y — ox
P = ~3F1, /)
dy
derivatives
f(xo), 1 (z0), 1" (z0), ...
and hence

Taylor polynomials.



B. Two equations:

Fi(x,y1,12) =
Fy(x,y1,12) =
P.

For F7, Fo with cont. p. d. up to order
k > 1, in a nbh. of (x O,y(l) yg) with
Fi(x, y?, yg) = () we obtain in some

{x[[lx = %" <0} x (4 = 8,90 +0) x (y5 — 6,43 + )

solutions (x, f1(x), fo(x)), f; again with
cont.p.d. up to order k.

OF (x"yp)
0y

Instead of = () assumed

OFy OF)
Oy’ O :
gL = det <@> = 0.
aFQ 3F2 ) i
Oy1’ Oy




Jacobi determinant.
For a sequence of functions

Fx,y) = (F1(% Y1y - s Ym)s - s Fn(X Y1, - YUm))-

andy = (y1,...,ym) define the Jacobi
determinant (briefly, the Jacobian)

D(F) (3@)
D(y) Iy, ij=1,...m

In a way it is an extension of a partial
derivative of one function F' by one y:
we have

D(F) OF

D(y) 9y
hence the following theorem will come
quite as an extension of the solution of

one equation.



Aside. Hopefully the students know from linear algebra
that (the absolute value) of the determinant

a1, 12, - .., aln
ey £ (.
Anly An2y -« -5 Qpn
is the volume of the parallelepiped determined by the

vectors (a11, @12, - - -, 1p),e., (A11,A12, - - -, Q1)
(As a simple exercise prove that the area of the parallelogram

>/-

(b17 b2

ai, az )
b1, by |
Thus, like a function f transforming an interval (a, b)

18 a1b2 — Clgbl =

to (f(a), f(b)) stretches or compresses the lengths of small

pieces of the interval around x in the rate of the (abso-
lute) value of % in x, a vector function f = (f1,..., f)
transforming a domain U C E,, to f[U] stetches or com-
presses the volumes of small pieces of U around x in the

rate of the (absolute) value of %.
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Theorem. Let F;(X,y1,...,Ym), ¢ = 1,...,m, be
functions of n + m variables with continuous partial
derivatives up to an order k > 1. Let

F(x",y") = o
and let D(F)
x" y? .
DW% y)#0

Then there exist 6 > 0 and A > 0 such that for every
x € (2} —6,20+0) x - x (20 — 8,20 +9)
there exists precisely one
y € (1) — Ay +A) X - x (g, — Ay, + A)

such that
F(x,y) =0.

(That is,
Fl(xayla" 7yn) — 07

Fo(X,y1,---,yn) =0. )
Furthermore, if we write this 'y as a vector function

f(x) = (fi(x),..., fin(X)), then the functions f; have

continuous partial deriwvatives up to the order k.



An application:

extremes with constraints.

Local extremes of a function f in one variable.
f was defined, say, on an interval, and had a derivative in
the interior. Then one considered the points in which the
derivative was 0, and in addition the boundary points of
the interval. Not much harder for more complex situati-
ons.

For functions of several variables, sear-
ching for candidates for local extremes
in the interiors of the domain is equally
easy (and for the same reason): at the
points of local extreme a, we must have

of
ox;
But the exceptional points on the boun-
dary are now typically infinitely many.

(@)=0, i=1,...,n. (¥



Example.
Find local extremes of

flo,y) =2 +2y

on the disc
B={(z,y)|z"+y° < 1}.

B is compact, and hence the function f
attains a minimum and a maximum on

B.

None of them is in the interior, though:

we have, constantly, % = 1 and g_ch =

2: thus, the extremes must be located
somewhere in the infinte set {(z, y) | %+
y? = 1}, and the rule (%) is of no use.



The approach: try to find local extre-
mes of a function f(xy,...,xy) sub-
ject to constraints g;j(x1,...,xn) = 0,
1=1,... k.

Theorem. Let f,q1,...,q: be real functions defi-

ned in an open set D C E,, and let them have con-
tinuous partial derivatives. Suppose that the rank of

the matriz
% g1
or: ' Ox,
M=1 ..., ..., ...
o0, g
ox:  Ox,
s the largest possible, that is k, everywhere in D.
If the function f achieves at a pointa = (ay, ..., ay)

a local extreme subject to the constraints

gi(x1, ..., x,) =0, i=1,... )k

then there exist numbers A1, ..., \p such that for each
1=1,...,n we have
0f@) | \~, . 99(a
N\ —22 =,
(%ci T jz; J 8:5@
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Back to the example: How it helps.

We have f—landaf:2 g(x,y) =
% 4 y° —1andhence%—2xand

gg = 2y. There is one A\ that satisfies

two equations
l+A-2x=0 and 24+ A2y =0.

This s possible only if y = 2x. Thus,
as o2 + y? = 1 we obtain 5z = 1 and
hence © = +-L \/, this localizes the ex-

tremes to (\[ \[) and (\[\[)
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Notes.

1. The tunctions f, g; were assumed to
be defined in an open D so that we
can take derivatives whenever we need
them. In typical applications one works
with functions that can be extended to
an open set containing the area in ques-
tion.

2. The force of the statement is
in asserting the existence of

Ao A

that satisfy more than k equati-
ons, as we have seen in the solu-
tion of the task from the exam-
ple.

3. The numbers A\; are known as Lagrange
multipliers.
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Sketch of proof of Theorem. A mat-
rix M has rank k iff at least one of the
k x k submatrices of M is regular (and

hence has a non-zero determinant). Let
us have, say;,

99 991
83717 Y 8xk
JEREE 0. (1)
gk 9Gr
ox,” Oz

Then by the Implicite Function Thm

we have in a nbh of a functions ¢;(x;_q, - . .

with cont. p. derivatives such that (write
x for (zp4q,...,2n))

gi(@1(x), ..., Pp(x),x) =0 for i=1,...
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Thus, a local maximum or a local mini-
mum of f(x) at a subject to the given
constraints implies 1. maximum or mi-
nimum (without constraints) of

F(x) = f(o1(x), ..., ox(x),X),
at a, and hence
O0F(a)
ox;
that is, by the Chain Rule,

=0 for 1=k+1,...,n,

a)9¢.(a)  O/f(a) -
Z @xr 8552 &CZ for i=k+1,...,n. (2

Taking derivatives of the constant functi-

ons g@<¢1< ), .--,dﬁ(?),?) = 0 we ob-
tain for 7 =1,.

)

dg;(a) 0¢r(a)  g,(a) .
7:21 0. Oz, + O, for i=k+1,..., n. (3)
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Use (1) (non-zero determinant) again.
Because of the rank of the matrix, the
System of linear equations

A i@ _ i=1,....k
axz ]z: axz 7 Y Y Y
has a unique solution Ay, ..., Ar. These

are the equalities from the statement for
1 < k only. It remains to be shown that
the same equalities hold also for ¢ > k.
By( ) and (3) fori>k

axz Z Aj 8:10@ N
k k

o a)do.(a dg;(a) d¢.(a) _
B Z 6?:@ 8:62 jzlA] rzl 8];1:7, or;
S (or@) - g 00E)

J=1
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Another use of IFT:
Regular maps.

Let U C K, be open. Let

fi? ?::17"'777/7

have continuous partial derivatives.

The resulting mapping
fI(fl,,fn)U—)En

is reqular if

for all x € U.
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Proposition. If f : U — K, is requ-
lar then the image £V of every open
V C U 1is open.

Comment before proof: Images added
to necessary preimages. Similarity with
images of closed subsets in the compact

case.

Proof. Let f(x") = y'. Define F : V x E, — E, by
setting

Fi(x,y) = fi(x) — yi. ()

then F(x", y’) = o and % = 0, and hence we can apply

[FT to obtain 0 > 0 and A > 0 such that for every y with
ly — yY| < 4, there exists a x such that |x —x°| < A
and Fj(x,y) = f;(x) — y; = 0. This means that we have
f(x) =y (note that y; are here the variables, x; are the
wanted functions), and

Qy’,8) =A{ylly —y°| <8} C f[V].
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Proposition. Let f : U — K, be a
reqular mapping. Then for each XV €
U there exists an open neighborhood
V' such that the restriction £|V is one-
to-one. Moreover, the mapping g

fIV] — E,, inverse to f|V is reqular.

Proof. We will use again the mapping F = (F3, ..., F},)
with Fj(x,y) = fi(x) — y; as before. For a sufficiently
small A > 0 we have precisely one x = g(y) such that
F(x,y) = 0 and |x — x’| < A. This g has, furthermore,
continuous partial derivatives. We have

D(id) = D(f o g) = D(f) - D(g).

By the Chain Rule (and the theorem on product of de-
terminants)

D(f) D(g)
D(x) Dfy)

and hence for each y € f[V], D—g( ) # 0.

= detD(f) - detD(g) =1

Corollary. A one-to-one reqular map-

ping ¥ : U — K, has a reqular inverse
g flU| — E,
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Detalils.
Text: Chapter XV, Sections 4, 6 and 5
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