
Repetition.
Implicite Functions Theorems.

Task: solving a system of equations

F1(x, y1, . . . , yn) = 0,

. . . . . . . . .

Fn(x, y1, . . . , yn) = 0

in terms of yi as well determined functi-
ons fi(x) (where x = (x1, . . . , xn)).

A. One equation: F (x, y) = 0:

In a nbhood of (x0, y0) assumed on F :
cont. p. d. up to order k ≥ 1,

F (x0, y0) = 0 and

∣∣∣∣∂F (x0, y0)

∂y

∣∣∣∣ 6= 0.

Then one has in some

{x | ||x− x0|| < δ} × (y0 − δ, y0 + δ)

unique solution (x, f (x)), an the re-
sulting f has cont.p.d. up to order k.
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Proved with one variable x.

The properties of f may be more transparent if we

indicate the shifts h1 = h and h2 = f (x + h) − f (x) in

Lagrange theorem by red:

0 = F (t + h, f (t + h))− F (t, f (t)) =

= F (t + h, f (t) + (f (t + h)− f (t)))− F (t, f (t)) =

=
∂F (t + θh, f (t) + θ(f (t + h)− f (t)))

∂x
h

+
∂F (t + θh, f (t) + θ(f (t + h)− f (t)))

∂y
(f (t + h)− f (t))

hence

f (t+h)−f (t) = −h·

∂F (t + θh, f (t) + θ(f (t + h)− f (t)))

∂x
∂F (t + θhf (t) + θ(f (t + h)− f (t)))

∂y
(∗)

for some θ between 0 and 1.Thus,

|f (t + h)− f (t)| ≤ |h| ·
∣∣∣∣Ka
∣∣∣∣

Hence f is continuous, and from (∗) further

lim
h→0

f (t + h)− f (t)

h
= −

∂F (t, f (t))

∂x
∂F (t, f (t))

∂y
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If we have partial derivatives of F in
(x0, y0) we can compute from

f ′(t) = −

∂F (t, f (t))

∂x
∂F (t, f (t))

∂y

derivatives

f ′(x0), f ′′(x0), f ′′′(x0), ...

and hence

Taylor polynomials.
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B. Two equations:

F1(x, y1, y2) = 0,

F2(x, y1, y2) = 0.

For F1, F2 with cont. p. d. up to order
k ≥ 1, in a nbh. of (x0, y0

1, y
0
2), with

Fi(x
0, y0

1, y
0
2) = 0 we obtain in some

{x | ||x− x0|| < δ} × (y01 − δ, y01 + δ)× (y02 − δ, y02 + δ)

solutions (x, f1(x), f2(x)), fi again with
cont.p.d. up to order k.

Instead of

∣∣∣∣∂F (x0,y0)
∂y

∣∣∣∣ 6= 0 assumed∣∣∣∣∣∣∣∣∣
∂F1

∂y1
,
∂F1

∂y2

∂F2

∂y1
,
∂F2

∂y2

∣∣∣∣∣∣∣∣∣ = det

(
∂Fi
∂yj

)
i,j

6= 0.
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Jacobi determinant.

For a sequence of functions

F(x, y) = (F1(x, y1, . . . , ym), . . . , Fm(x, y1, . . . , ym)).

and y = (y1, . . . , ym) define the Jacobi
determinant (briefly, the Jacobian)

D(F)

D(y)
= det

(
∂Fi
∂yj

)
i,j=1,...,m

In a way it is an extension of a partial
derivative of one function F by one y:
we have

D(F )

D(y)
=
∂F

∂y
.

hence the following theorem will come
quite as an extension of the solution of
one equation.
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Aside. Hopefully the students know from linear algebra

that (the absolute value) of the determinant∣∣∣∣∣∣
a11, a12, . . . , a1n
. . . , . . . , . . .

an1, an2, . . . , ann

∣∣∣∣∣∣ 6= 0.

is the volume of the parallelepiped determined by the

vectors (a11, a12, . . . , a1n),..., (a11, a12, . . . , a1n).
(As a simple exercise prove that the area of the parallelogram

.

(b1, b2)

33

(a1, a2)

FF

(0, 0)

DD

44

is a1b2 − a2b1 =
∣∣∣∣ a1, a2b1, b2

∣∣∣∣.)
Thus, like a function f transforming an interval (a, b)

to (f (a), f (b)) stretches or compresses the lengths of small

pieces of the interval around x in the rate of the (abso-

lute) value of df
dx in x, a vector function f = (f1, . . . , fn)

transforming a domain U ⊆ En to f [U ] stetches or com-

presses the volumes of small pieces of U around x in the

rate of the (absolute) value of D(f)
D(x).
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Theorem. Let Fi(x, y1, . . . , ym), i = 1, . . . ,m, be

functions of n + m variables with continuous partial

derivatives up to an order k ≥ 1. Let

F(x0, y0) = o

and let
D(F)

D(y)
(x0, y0) 6= 0.

Then there exist δ > 0 and ∆ > 0 such that for every

x ∈ (x01 − δ, x01 + δ)× · · · × (x0n − δ, x0n + δ)

there exists precisely one

y ∈ (y01 −∆, y01 + ∆)× · · · × (y0m −∆, x0m + ∆)

such that

F(x, y) = 0.

(That is,
F1(x, y1, . . . , yn) = 0,

. . . . . . . . .

Fn(x, y1, . . . , yn) = 0. )

Furthermore, if we write this y as a vector function

f(x) = (f1(x), . . . , fm(x)), then the functions fi have

continuous partial derivatives up to the order k.
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An application:
extremes with constraints.
Local extremes of a function f in one variable.

f was defined, say, on an interval, and had a derivative in

the interior. Then one considered the points in which the

derivative was 0, and in addition the boundary points of

the interval. Not much harder for more complex situati-

ons.

For functions of several variables, sear-
ching for candidates for local extremes
in the interiors of the domain is equally
easy (and for the same reason): at the
points of local extreme a, we must have

∂f

∂xi
(a) = 0, i = 1, . . . , n. (∗)

But the exceptional points on the boun-
dary are now typically infinitely many.
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Example.
Find local extremes of

f (x, y) = x + 2y

on the disc

B = {(x, y) |x2 + y2 ≤ 1}.
B is compact, and hence the function f
attains a minimum and a maximum on
B.

None of them is in the interior, though:

we have, constantly, ∂f∂x = 1 and ∂f
∂y =

2; thus, the extremes must be located
somewhere in the infinte set {(x, y) |x2+
y2 = 1}, and the rule (∗) is of no use.
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The approach: try to find local extre-
mes of a function f (x1, . . . , xn) sub-
ject to constraints gi(x1, . . . , xn) = 0,
i = 1, . . . , k.

Theorem. Let f, g1, . . . , gk be real functions defi-

ned in an open set D ⊆ En, and let them have con-

tinuous partial derivatives. Suppose that the rank of

the matrix

M =


∂g1
∂x1

, . . . ,
∂g1
∂xn

. . . , . . . , . . .
∂gk
∂x1

, . . . ,
∂gk
∂xn


is the largest possible, that is k, everywhere in D.

If the function f achieves at a point a = (a1, . . . , an)

a local extreme subject to the constraints

gi(x1, . . . , xn) = 0, i = 1, . . . , k

then there exist numbers λ1, . . . , λk such that for each

i = 1, . . . , n we have

∂f (a)

∂xi
+

k∑
j=1

λj ·
∂gj(a)

∂xi
= 0.
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Back to the example: How it helps.

We have ∂f
∂x = 1 and ∂f

∂y = 2, g(x, y) =

x2 + y2 − 1 and hence ∂g
∂x = 2x and

∂g
∂y = 2y. There is one λ that satisfies
two equations

1 + λ · 2x = 0 and 2 + λ · 2y = 0.

This is possible only if y = 2x. Thus,
as x2 + y2 = 1 we obtain 5x2 = 1 and
hence x = ± 1√

5
; this localizes the ex-

tremes to ( 1√
5
, 2√

5
) and (−1√

5
−2√

5
).
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Notes.
1. The functions f, gi were assumed to
be defined in an open D so that we
can take derivatives whenever we need
them. In typical applications one works
with functions that can be extended to
an open set containing the area in ques-
tion.

2. The force of the statement is
in asserting the existence of

λ1, . . . , λk

that satisfy more than k equati-
ons, as we have seen in the solu-
tion of the task from the exam-
ple.

3. The numbers λi are known as Lagrange
multipliers.
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Sketch of proof of Theorem. A mat-
rix M has rank k iff at least one of the
k× k submatrices of M is regular (and
hence has a non-zero determinant). Let
us have, say,∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1
∂x1

, . . . ,
∂g1
∂xk

. . . , . . . , . . .

∂gk
∂x1

, . . . ,
∂gk
∂xk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0. (1)

Then by the Implicite Function Thm
we have in a nbh of a functions φi(xk+1, . . . , xn)
with cont. p. derivatives such that (write
x̃ for (xk+1, . . . , xn))

gi(φ1(x̃), . . . , φk(x̃), x̃) = 0 for i = 1, . . . , k.
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Thus, a local maximum or a local mini-
mum of f (x) at a subject to the given
constraints implies l. maximum or mi-
nimum (without constraints) of

F (x̃) = f (φ1(x̃), . . . , φk(x̃), x̃),

at ã, and hence

∂F (ã)

∂xi
= 0 for i = k + 1, . . . , n,

that is, by the Chain Rule,
k∑
r=1

∂f (a)

∂xr

∂φr(ã)

∂xi
+
∂f (a)

∂xi
for i = k + 1, . . . , n. (2)

Taking derivatives of the constant functi-
ons gi(φ1(x̃), . . . , φ(x̃), x̃) = 0 we ob-
tain for j = 1, . . . , k,

k∑
r=1

∂gj(a)

∂xr

∂φr(ã)

∂xi
+
∂gj(a)

∂xi
for i = k+1, . . . , n. (3)
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Use (1) (non-zero determinant) again.
Because of the rank of the matrix, the
system of linear equations

∂f (a)

∂xi
+

n∑
j=1

λj·
∂gj(a)

∂xi
= 0, i = 1, . . . , k,

has a unique solution λ1, . . . , λk. These
are the equalities from the statement for
i ≤ k only. It remains to be shown that
the same equalities hold also for i > k.
By (2) and (3), for i > k

∂f (a)

∂xi
+

n∑
j=1

λj ·
∂gj(a)

∂xi
=

= −
k∑
r=1

∂f (a)

∂xr

∂φr(ã)

∂xi
−

k∑
j=1

λj

k∑
r=1

∂gj(a)

∂xr

∂φr(ã)

∂xi
=

= −
n∑
r=1

∂f (a)

∂xi
+

n∑
j=1

λj ·
∂gj(a)

∂xi

 ∂φr(ã)

∂xi
=

= −
n∑
r=1

0 · ∂φr(ã)

∂xi
= 0.
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Another use of IFT:
Regular maps.

Let U ⊆ En be open. Let

fi, i = 1, . . . , n,

have continuous partial derivatives.

The resulting mapping

f = (f1, . . . , fn) : U → En
is regular if

D(f)

D(x)
(x) 6= 0

for all x ∈ U .
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Proposition. If f : U → En is regu-
lar then the image f [V ] of every open
V ⊆ U is open.

Comment before proof: Images added
to necessary preimages. Similarity with
images of closed subsets in the compact
case.
Proof. Let f (x0) = y0. Define F : V × En → En by

setting

Fi(x, y) = fi(x)− yi. (∗)
then F(x0, y0) = o and D(F)

D(x) 6= 0, and hence we can apply

IFT to obtain δ > 0 and ∆ > 0 such that for every y with

||y − y0|| < δ, there exists a x such that ||x− x0|| < ∆

and Fi(x, y) = fi(x)− yi = 0. This means that we have

f(x) = y (note that yi are here the variables, xj are the

wanted functions), and

Ω(y0, δ) = {y | ||y − y0|| < δ} ⊆ f [V ].
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Proposition. Let f : U → En be a
regular mapping. Then for each x0 ∈
U there exists an open neighborhood
V such that the restriction f|V is one-
to-one. Moreover, the mapping g :
f [V ]→ En inverse to f|V is regular.
Proof. We will use again the mapping F = (F1, . . . , Fn)

with Fi(x, y) = fi(x) − yi as before. For a sufficiently

small ∆ > 0 we have precisely one x = g(y) such that

F(x, y) = 0 and ||x− x0|| < ∆. This g has, furthermore,

continuous partial derivatives. We have

D(id) = D(f ◦ g) = D(f) ·D(g).

By the Chain Rule (and the theorem on product of de-

terminants)

D(f)

D(x)
· D(g)

D(y)
= detD(f) · detD(g) = 1

and hence for each y ∈ f [V ], D(g)
D(y)(y) 6= 0.

Corollary. A one-to-one regular map-
ping f : U → En has a regular inverse
g : f [U ]→ En.
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Details.
Text: Chapter XV, Sections 4, 6 and 5
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