
Repetition.
Compact space: every (xn)n in (X, d)
has a convergent subsequence.

From previous semester: 〈a, b〉 is com-
pact, hence the term “compact interval”

A closed subspace of a compact space
is compact.

Bounded X . Products.

A subspace of En is compact iff
it is closed and bounded.

The image of a compact subset under
a continuous map is compact.

Corollary. A continuous real function
on a compact space attains a maxi-
mum and a minimum.

(a compact M ⊆ R has the largest and
least elements: it is bounded and closed)
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A compact subset of an arbitrary
metric space is closed.

Corollary. If X is compact and
f : X → Y continuous, then for every
A ⊆ X the image f [A] is closed in Y .

What is peculiar, discuss.

Cauchy sequences. Convergent sequen-
ces are Cauchy.

Complete space. R is complete.

A product of complete spaces is
complete. En is complete.

A subspace of En is complete iff it is
closed.

Every compact space is complete.
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Implicit Functions Theorems.

The Task: Given continuous real functi-
ons Fi(x1, . . . , xm, y1, . . . , yn), i = 1, . . . , n
of m + n variables. Does the system of
equations

F1(x1, . . . , xm, y1, . . . , yn) = 0,

. . . . . . . . .

Fn(x1, . . . , xm, y1, . . . , yn) = 0

determine in some sense functions

fi ≡ yi(x1, . . . , xm), i = 1, . . . , n,

how, where, and what are their proper-
ties?

Illustrate the problems on F (x, y) =
x2 + y2 − 1, that is, on the equation

x2 + y2 = 1

(MA5pic 1)
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A few observations:
– for some x0 like the x0 < −1 in

the square to the left, there is no solu-
tion of F (x0, y) = 0, not to speak of
y(x) in the vicinity;

– even if a solution in the neighbor-
hood of an x0 exists, we cannot correctly
think of a function in this neighborhood
of x0. What one needs is a “window”
around a solution (x0, y0) delimiting not
only a neigborhood of x0 but also a
neighborhood of y0;

– and there is also the case like that
of the x0 = 1 where there are plenty of
solutions in the vicinity, but no window
allowing for unique y’s, even one-sided.
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In the case of a function F (x, y) this
is all that can happen. We have

Theorem. Let F (x, y) be a real function
defined in a nbhood of (x0, y0). Let
F have continuous partial derivatives
up to the order k ≥ 1 and let

F (x0, y0) = 0 and

∣∣∣∣∂F (x0, y0)

∂y

∣∣∣∣ 6= 0.

Then there are δ > 0, ∆ > 0 s. t. for
each x ∈ (x0 − δ1, x0 + δ1), there is
precisely one y ∈ (y0 − ∆1, y0 + ∆1)
s. t.

F (x, y) = 0.

Furthermore, if we write y = f (x) for
this unique y, then this
f : (x0−δ, x0+δ)→ R has continuous
derivatives up to the order k.
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Let, say,

∂F (x0, y0)

∂y
> 0.

∂F
∂y are continuous, A(δ) = {x | |x −
x0| ≤ δ} is closed and bounded, hence
compact and there are a > 0,K, δ1 > 0
and ∆ > 0 such that for all (x, y) ∈
(x0− δ1, x0 + δ1)×〈y0−∆, y0 + ∆〉 we
have

∂F (x, y)

∂y
≥ a and

∣∣∣∣∂F (x, y)

∂x

∣∣∣∣ ≤ K.

(∗)
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The function f : Fix an x ∈ U(δ1) =
(x0− δ1, x0 + δ1) and define a function
in y, y ∈ (y0 −∆, y0 + ∆) by

ϕx(y) = F (x, y).

Then ϕ′x(y) =
∂F (x,y)
∂y > 0 and hence

all ϕx(y) are increasing in y, and
ϕx0(y0 −∆) < ϕx0(y0) = 0 < ϕx0(y0 + ∆).

F is continuous, and hence there is a δ,
0 < δ ≤ δ1, such that

∀x ∈ U(δ), ϕx(y0−∆) < 0 < ϕx(y0+∆).

ϕx is increasing and hence one-to-one.
Thus there is precisely one y ∈ (y0 −
∆, y0 + ∆) such that ϕx(y) = 0 – that
is, F (x, y) = 0. Denote this y by f (x).

(MA5pic 2)
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Properties of f : (Note that so far we do not

know even whether f is continuous.)

By Lagrange theorem

0 = F (t + h, f (t + h))− F (t, f (t)) =

= F (t + h, f (t) + (f (t + h)− f (t)))− F (t, f (t)) =

=
∂F (t + θh, f (t) + θ(f (t + h)− f (t)))

∂x
h

+
∂F (t + θh, f (t) + θ(f (t + h)− f (t)))

∂y
(f (t + h)− f (t))

hence

f (t+h)−f (t) = −h·

∂F (t + θh, f (t) + θ(f (t + h)− f (t)))

∂x
∂F (t + θhf (t) + θ(f (t + h)− f (t)))

∂y
(∗)

for some θ between 0 and 1.Thus,

|f (t + h)− f (t)| ≤ |h| ·
∣∣∣∣Ka

∣∣∣∣
Hence f is continuous, and from (∗) further

lim
h→0

f (t + h)− f (t)

h
= −

∂F (t, f (t))

∂x
∂F (t, f (t))

∂y
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We have, hence,

f ′(t) = −

∂F (t, f (t))

∂x
∂F (t, f (t))

∂y

and from this formula we can now take
derivatives of higher order as long as the
existence of derivatives of the partial de-
rivatives on the right hand side allow.

Note. Hence we can take derivatives
of f as long as we can take partial de-
rivatives of F . But beware: there have
to be at least the first derivatives (note
the k ≥ 1 in the formulation of The-
orem). The ∂F

∂y was needed already for

the existence of f .
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There was just one variable in f (m =
1 in the problem setting just to avoid
complicated notation). The same reaso-
ning yields

Theorem. Let F (x, y) be a function of m + 1 va-

riables defined in a neighbourhood of a point (x0, y0).
Let F have continuous partial derivatives up to the

order k ≥ 1 and let

F (x0, y0) = 0 and

∣∣∣∣∂F (x0, y0)

∂y

∣∣∣∣ 6= 0.

Then there exist δ > 0 and ∆ > 0 such that for every

x with ||x − x0|| < δ there exists precisely one y with

|y − y0| < ∆ such that

F (x, y) = 0.

Furthermore, if we write y = f (x) for this unique

solution y, then the function

f : (x01 − δ, x01 + δ)× · · · × (x0n − δ, x0n + δ)→ R

has continuous partial derivatives up to the order k.
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Two equations

Consider a pair of equations

F1(x, y1, y2) = 0,

F2(x, y1, y2) = 0

and try to find a solution yi = fi(x),
i = 1, 2, in a neighborhood of a point
(x0, y0

1, y
0
2). Apply the Theorem about

one equation. Think of the second equation
as an equation for y2; in a neighborhood
of (x0, y0

1, y
0
2) we obtain y2 as a function

ψ(x, y1). Substituting this into the first
equation to obtain

G(x, y1) = F1(x, y1, ψ(x, y1));

and a solution y1 = f1(x) in a neighbor-
hood of (x0, y0

1) can be substituted into
ψ to obtain y2 = f2(x) = ψ(x, f1(x)).
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What we have assumed:
– continuous partial derivatives of Fi.
– Then, to obtain ψ we needed to have

∂F2

∂y2
(x0, y0

1, y
0
2) 6= 0. (∗)

– Finally, we need (use the Chain Rule)

∂G

∂y1
(x0, x0) =

∂F1

∂y1
+
∂F1

∂y2

∂ψ

∂y1
6= 0.

(∗∗)
Use the formula we already have

∂ψ

∂y1
= −

(
∂F1

∂y2

)−1 ∂F2

∂y1

and transform (∗∗) to(
∂F1

∂y2

)−1 (∂F1

∂y1

∂F2

∂y2
− ∂F1

∂y2

∂F2

∂y1

)
6= 0.
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that is,
∂F1

∂y1

∂F2

∂y2
− ∂F1

∂y2

∂F2

∂y1
6= 0.

This is a familiar formula, namely that
for a determinant. Thus we have in fact
assumed that∣∣∣∣∣∣∣∣∣

∂F1

∂y1
,
∂F1

∂y2

∂F2

∂y1
,
∂F2

∂y2

∣∣∣∣∣∣∣∣∣ = det

(
∂Fi
∂yj

)
i,j

6= 0.

(And this condition suffices: if we assume that this deter-

minant is non-zero we have either
∂F2

∂y2
(x0, y01, y

0
2) 6= 0

and/or
∂F2

∂y1
(x0, y01, y

0
2) 6= 0,

so if the latter holds, we can start by solving F2(x, y1, y2) =

0 for y1 instead of y2.)
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Details.
Text: Chapter XV, Sections 1,2 and 3
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